"megatron/vscode:/vscode.git/clone" did not exist on "b1714c14ce24ed045d6b0e0d85a4e8744e2e24a7"
test_transforms_v2_consistency.py 34.3 KB
Newer Older
1
2
import importlib.machinery
import importlib.util
3
import inspect
4
import random
5
import re
6
from pathlib import Path
7

8
import numpy as np
9
import PIL.Image
10
import pytest
11
12

import torch
13
import torchvision.transforms.v2 as v2_transforms
14
from common_utils import assert_close, assert_equal, set_rng_seed
15
from torch import nn
16
from torchvision import transforms as legacy_transforms, tv_tensors
17
from torchvision._utils import sequence_to_str
18

19
from torchvision.transforms import functional as legacy_F
20
from torchvision.transforms.v2 import functional as prototype_F
Nicolas Hug's avatar
Nicolas Hug committed
21
from torchvision.transforms.v2._utils import _get_fill, query_size
22
from torchvision.transforms.v2.functional import to_pil_image
23
24
25
26
27
28
29
30
from transforms_v2_legacy_utils import (
    ArgsKwargs,
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
    make_segmentation_mask,
)
31

32
DEFAULT_MAKE_IMAGES_KWARGS = dict(color_spaces=["RGB"], extra_dims=[(4,)])
33
34


Nicolas Hug's avatar
Nicolas Hug committed
35
36
37
38
39
40
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


41
42
43
44
45
46
47
48
49
class NotScriptableArgsKwargs(ArgsKwargs):
    """
    This class is used to mark parameters that render the transform non-scriptable. They still work in eager mode and
    thus will be tested there, but will be skipped by the JIT tests.
    """

    pass


50
51
class ConsistencyConfig:
    def __init__(
52
53
54
        self,
        prototype_cls,
        legacy_cls,
55
56
        # If no args_kwargs is passed, only the signature will be checked
        args_kwargs=(),
57
58
59
        make_images_kwargs=None,
        supports_pil=True,
        removed_params=(),
60
        closeness_kwargs=None,
61
62
63
    ):
        self.prototype_cls = prototype_cls
        self.legacy_cls = legacy_cls
64
        self.args_kwargs = args_kwargs
65
66
        self.make_images_kwargs = make_images_kwargs or DEFAULT_MAKE_IMAGES_KWARGS
        self.supports_pil = supports_pil
67
        self.removed_params = removed_params
68
        self.closeness_kwargs = closeness_kwargs or dict(rtol=0, atol=0)
69
70


71
72
73
74
# These are here since both the prototype and legacy transform need to be constructed with the same random parameters
LINEAR_TRANSFORMATION_MEAN = torch.rand(36)
LINEAR_TRANSFORMATION_MATRIX = torch.rand([LINEAR_TRANSFORMATION_MEAN.numel()] * 2)

75
76
CONSISTENCY_CONFIGS = [
    ConsistencyConfig(
77
        v2_transforms.Normalize,
78
79
80
81
82
83
84
85
        legacy_transforms.Normalize,
        [
            ArgsKwargs(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ],
        supports_pil=False,
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.float]),
    ),
    ConsistencyConfig(
86
        v2_transforms.CenterCrop,
87
88
89
90
91
92
        legacy_transforms.CenterCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
    ),
93
    ConsistencyConfig(
94
        v2_transforms.FiveCrop,
95
96
97
98
99
100
101
102
        legacy_transforms.FiveCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
103
        v2_transforms.TenCrop,
104
105
106
107
        legacy_transforms.TenCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
108
            ArgsKwargs(18, vertical_flip=True),
109
110
111
112
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
113
        v2_transforms.Pad,
114
115
        legacy_transforms.Pad,
        [
116
            NotScriptableArgsKwargs(3),
117
118
119
            ArgsKwargs([3]),
            ArgsKwargs([2, 3]),
            ArgsKwargs([3, 2, 1, 4]),
120
121
122
123
124
            NotScriptableArgsKwargs(5, fill=1, padding_mode="constant"),
            ArgsKwargs([5], fill=1, padding_mode="constant"),
            NotScriptableArgsKwargs(5, padding_mode="edge"),
            NotScriptableArgsKwargs(5, padding_mode="reflect"),
            NotScriptableArgsKwargs(5, padding_mode="symmetric"),
125
126
        ],
    ),
127
128
    *[
        ConsistencyConfig(
129
            v2_transforms.LinearTransformation,
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            legacy_transforms.LinearTransformation,
            [
                ArgsKwargs(LINEAR_TRANSFORMATION_MATRIX.to(matrix_dtype), LINEAR_TRANSFORMATION_MEAN.to(matrix_dtype)),
            ],
            # Make sure that the product of the height, width and number of channels matches the number of elements in
            # `LINEAR_TRANSFORMATION_MEAN`. For example 2 * 6 * 3 == 4 * 3 * 3 == 36.
            make_images_kwargs=dict(
                DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(2, 6), (4, 3)], color_spaces=["RGB"], dtypes=[image_dtype]
            ),
            supports_pil=False,
        )
        for matrix_dtype, image_dtype in [
            (torch.float32, torch.float32),
            (torch.float64, torch.float64),
            (torch.float32, torch.uint8),
            (torch.float64, torch.float32),
            (torch.float32, torch.float64),
        ]
    ],
149
    ConsistencyConfig(
150
        v2_transforms.Grayscale,
151
152
153
154
155
        legacy_transforms.Grayscale,
        [
            ArgsKwargs(num_output_channels=1),
            ArgsKwargs(num_output_channels=3),
        ],
156
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
157
158
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
159
    ),
160
    ConsistencyConfig(
161
        v2_transforms.ToPILImage,
162
        legacy_transforms.ToPILImage,
163
        [NotScriptableArgsKwargs()],
164
165
        make_images_kwargs=dict(
            color_spaces=[
166
167
168
169
                "GRAY",
                "GRAY_ALPHA",
                "RGB",
                "RGBA",
170
171
172
173
174
175
            ],
            extra_dims=[()],
        ),
        supports_pil=False,
    ),
    ConsistencyConfig(
176
        v2_transforms.Lambda,
177
178
        legacy_transforms.Lambda,
        [
179
            NotScriptableArgsKwargs(lambda image: image / 2),
180
181
182
183
184
        ],
        # Technically, this also supports PIL, but it is overkill to write a function here that supports tensor and PIL
        # images given that the transform does nothing but call it anyway.
        supports_pil=False,
    ),
185
    ConsistencyConfig(
186
        v2_transforms.RandomEqualize,
187
188
189
190
191
192
193
194
        legacy_transforms.RandomEqualize,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
195
        v2_transforms.RandomInvert,
196
197
198
199
200
201
202
        legacy_transforms.RandomInvert,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
203
        v2_transforms.RandomPosterize,
204
205
206
207
208
209
210
211
212
        legacy_transforms.RandomPosterize,
        [
            ArgsKwargs(p=0, bits=5),
            ArgsKwargs(p=1, bits=1),
            ArgsKwargs(p=1, bits=3),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
213
        v2_transforms.RandomSolarize,
214
215
216
217
218
219
220
        legacy_transforms.RandomSolarize,
        [
            ArgsKwargs(p=0, threshold=0.5),
            ArgsKwargs(p=1, threshold=0.3),
            ArgsKwargs(p=1, threshold=0.99),
        ],
    ),
221
222
    *[
        ConsistencyConfig(
223
            v2_transforms.RandomAutocontrast,
224
225
226
227
228
229
230
231
232
233
            legacy_transforms.RandomAutocontrast,
            [
                ArgsKwargs(p=0),
                ArgsKwargs(p=1),
            ],
            make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[dt]),
            closeness_kwargs=ckw,
        )
        for dt, ckw in [(torch.uint8, dict(atol=1, rtol=0)), (torch.float32, dict(rtol=None, atol=None))]
    ],
234
    ConsistencyConfig(
235
        v2_transforms.RandomAdjustSharpness,
236
237
238
        legacy_transforms.RandomAdjustSharpness,
        [
            ArgsKwargs(p=0, sharpness_factor=0.5),
239
            ArgsKwargs(p=1, sharpness_factor=0.2),
240
241
            ArgsKwargs(p=1, sharpness_factor=0.99),
        ],
242
        closeness_kwargs={"atol": 1e-6, "rtol": 1e-6},
243
244
    ),
    ConsistencyConfig(
245
        v2_transforms.RandomGrayscale,
246
247
248
249
250
        legacy_transforms.RandomGrayscale,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
251
252
253
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
254
255
    ),
    ConsistencyConfig(
256
        v2_transforms.ColorJitter,
257
258
259
260
261
262
263
264
265
266
267
        legacy_transforms.ColorJitter,
        [
            ArgsKwargs(),
            ArgsKwargs(brightness=0.1),
            ArgsKwargs(brightness=(0.2, 0.3)),
            ArgsKwargs(contrast=0.4),
            ArgsKwargs(contrast=(0.5, 0.6)),
            ArgsKwargs(saturation=0.7),
            ArgsKwargs(saturation=(0.8, 0.9)),
            ArgsKwargs(hue=0.3),
            ArgsKwargs(hue=(-0.1, 0.2)),
268
            ArgsKwargs(brightness=0.1, contrast=0.4, saturation=0.5, hue=0.3),
269
        ],
270
        closeness_kwargs={"atol": 1e-5, "rtol": 1e-5},
271
272
    ),
    ConsistencyConfig(
273
        v2_transforms.RandomPerspective,
274
275
276
277
278
        legacy_transforms.RandomPerspective,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, distortion_scale=0.3),
279
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=v2_transforms.InterpolationMode.NEAREST),
280
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=PIL.Image.NEAREST),
281
282
283
            ArgsKwargs(p=1, distortion_scale=0.1, fill=1),
            ArgsKwargs(p=1, distortion_scale=0.4, fill=(1, 2, 3)),
        ],
284
        closeness_kwargs={"atol": None, "rtol": None},
285
    ),
286
    ConsistencyConfig(
287
        v2_transforms.PILToTensor,
288
289
290
        legacy_transforms.PILToTensor,
    ),
    ConsistencyConfig(
291
        v2_transforms.ToTensor,
292
293
294
        legacy_transforms.ToTensor,
    ),
    ConsistencyConfig(
295
        v2_transforms.Compose,
296
297
298
        legacy_transforms.Compose,
    ),
    ConsistencyConfig(
299
        v2_transforms.RandomApply,
300
301
302
        legacy_transforms.RandomApply,
    ),
    ConsistencyConfig(
303
        v2_transforms.RandomChoice,
304
305
306
        legacy_transforms.RandomChoice,
    ),
    ConsistencyConfig(
307
        v2_transforms.RandomOrder,
308
309
310
        legacy_transforms.RandomOrder,
    ),
    ConsistencyConfig(
311
        v2_transforms.AugMix,
312
313
314
        legacy_transforms.AugMix,
    ),
    ConsistencyConfig(
315
        v2_transforms.AutoAugment,
316
317
318
        legacy_transforms.AutoAugment,
    ),
    ConsistencyConfig(
319
        v2_transforms.RandAugment,
320
321
322
        legacy_transforms.RandAugment,
    ),
    ConsistencyConfig(
323
        v2_transforms.TrivialAugmentWide,
324
325
        legacy_transforms.TrivialAugmentWide,
    ),
326
327
328
]


329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
@pytest.mark.parametrize("config", CONSISTENCY_CONFIGS, ids=lambda config: config.legacy_cls.__name__)
def test_signature_consistency(config):
    legacy_params = dict(inspect.signature(config.legacy_cls).parameters)
    prototype_params = dict(inspect.signature(config.prototype_cls).parameters)

    for param in config.removed_params:
        legacy_params.pop(param, None)

    missing = legacy_params.keys() - prototype_params.keys()
    if missing:
        raise AssertionError(
            f"The prototype transform does not support the parameters "
            f"{sequence_to_str(sorted(missing), separate_last='and ')}, but the legacy transform does. "
            f"If that is intentional, e.g. pending deprecation, please add the parameters to the `removed_params` on "
            f"the `ConsistencyConfig`."
        )

    extra = prototype_params.keys() - legacy_params.keys()
347
348
349
350
351
352
    extra_without_default = {
        param
        for param in extra
        if prototype_params[param].default is inspect.Parameter.empty
        and prototype_params[param].kind not in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}
    }
353
354
    if extra_without_default:
        raise AssertionError(
355
356
357
            f"The prototype transform requires the parameters "
            f"{sequence_to_str(sorted(extra_without_default), separate_last='and ')}, but the legacy transform does "
            f"not. Please add a default value."
358
359
        )

360
361
362
363
364
365
    legacy_signature = list(legacy_params.keys())
    # Since we made sure that we don't have any extra parameters without default above, we clamp the prototype signature
    # to the same number of parameters as the legacy one
    prototype_signature = list(prototype_params.keys())[: len(legacy_signature)]

    assert prototype_signature == legacy_signature
366
367


368
369
370
def check_call_consistency(
    prototype_transform, legacy_transform, images=None, supports_pil=True, closeness_kwargs=None
):
371
372
    if images is None:
        images = make_images(**DEFAULT_MAKE_IMAGES_KWARGS)
373

374
375
    closeness_kwargs = closeness_kwargs or dict()

376
377
    for image in images:
        image_repr = f"[{tuple(image.shape)}, {str(image.dtype).rsplit('.')[-1]}]"
378
379
380

        image_tensor = torch.Tensor(image)
        try:
381
            torch.manual_seed(0)
382
            output_legacy_tensor = legacy_transform(image_tensor)
383
384
        except Exception as exc:
            raise pytest.UsageError(
385
                f"Transforming a tensor image {image_repr} failed in the legacy transform with the "
386
                f"error above. This means that you need to specify the parameters passed to `make_images` through the "
387
388
389
390
                "`make_images_kwargs` of the `ConsistencyConfig`."
            ) from exc

        try:
391
            torch.manual_seed(0)
392
            output_prototype_tensor = prototype_transform(image_tensor)
393
394
        except Exception as exc:
            raise AssertionError(
395
                f"Transforming a tensor image with shape {image_repr} failed in the prototype transform with "
396
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
397
                f"`is_pure_tensor` path in `_transform`."
398
399
            ) from exc

400
        assert_close(
401
402
403
            output_prototype_tensor,
            output_legacy_tensor,
            msg=lambda msg: f"Tensor image consistency check failed with: \n\n{msg}",
404
            **closeness_kwargs,
405
406
407
        )

        try:
408
            torch.manual_seed(0)
409
            output_prototype_image = prototype_transform(image)
410
411
        except Exception as exc:
            raise AssertionError(
412
                f"Transforming a image tv_tensor with shape {image_repr} failed in the prototype transform with "
413
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
414
                f"`tv_tensors.Image` path in `_transform`."
415
416
            ) from exc

417
        assert_close(
418
            output_prototype_image,
419
            output_prototype_tensor,
420
            msg=lambda msg: f"Output for tv_tensor and tensor images is not equal: \n\n{msg}",
421
            **closeness_kwargs,
422
423
        )

424
        if image.ndim == 3 and supports_pil:
425
            image_pil = to_pil_image(image)
426

427
            try:
428
                torch.manual_seed(0)
429
                output_legacy_pil = legacy_transform(image_pil)
430
431
            except Exception as exc:
                raise pytest.UsageError(
432
                    f"Transforming a PIL image with shape {image_repr} failed in the legacy transform with the "
433
434
435
436
437
                    f"error above. If this transform does not support PIL images, set `supports_pil=False` on the "
                    "`ConsistencyConfig`. "
                ) from exc

            try:
438
                torch.manual_seed(0)
439
                output_prototype_pil = prototype_transform(image_pil)
440
441
            except Exception as exc:
                raise AssertionError(
442
                    f"Transforming a PIL image with shape {image_repr} failed in the prototype transform with "
443
444
445
446
                    f"the error above. This means there is a consistency bug either in `_get_params` or in the "
                    f"`PIL.Image.Image` path in `_transform`."
                ) from exc

447
            assert_close(
448
449
                output_prototype_pil,
                output_legacy_pil,
450
                msg=lambda msg: f"PIL image consistency check failed with: \n\n{msg}",
451
                **closeness_kwargs,
452
            )
453
454


455
@pytest.mark.parametrize(
456
457
    ("config", "args_kwargs"),
    [
458
459
460
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
461
        for config in CONSISTENCY_CONFIGS
462
        for idx, args_kwargs in enumerate(config.args_kwargs)
463
    ],
464
)
465
@pytest.mark.filterwarnings("ignore")
466
def test_call_consistency(config, args_kwargs):
467
468
469
    args, kwargs = args_kwargs

    try:
470
        legacy_transform = config.legacy_cls(*args, **kwargs)
471
472
473
474
475
476
477
    except Exception as exc:
        raise pytest.UsageError(
            f"Initializing the legacy transform failed with the error above. "
            f"Please correct the `ArgsKwargs({args_kwargs})` in the `ConsistencyConfig`."
        ) from exc

    try:
478
        prototype_transform = config.prototype_cls(*args, **kwargs)
479
480
481
482
483
484
    except Exception as exc:
        raise AssertionError(
            "Initializing the prototype transform failed with the error above. "
            "This means there is a consistency bug in the constructor."
        ) from exc

485
486
487
488
489
    check_call_consistency(
        prototype_transform,
        legacy_transform,
        images=make_images(**config.make_images_kwargs),
        supports_pil=config.supports_pil,
490
        closeness_kwargs=config.closeness_kwargs,
491
492
493
    )


494
495
496
497
498
499
500
501
502
get_params_parametrization = pytest.mark.parametrize(
    ("config", "get_params_args_kwargs"),
    [
        pytest.param(
            next(config for config in CONSISTENCY_CONFIGS if config.prototype_cls is transform_cls),
            get_params_args_kwargs,
            id=transform_cls.__name__,
        )
        for transform_cls, get_params_args_kwargs in [
503
504
505
            (v2_transforms.ColorJitter, ArgsKwargs(brightness=None, contrast=None, saturation=None, hue=None)),
            (v2_transforms.RandomPerspective, ArgsKwargs(23, 17, 0.5)),
            (v2_transforms.AutoAugment, ArgsKwargs(5)),
506
507
        ]
    ],
508
)
509
510


511
@get_params_parametrization
512
def test_get_params_alias(config, get_params_args_kwargs):
513
514
    assert config.prototype_cls.get_params is config.legacy_cls.get_params

515
516
517
518
519
    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    legacy_transform = config.legacy_cls(*args, **kwargs)
    prototype_transform = config.prototype_cls(*args, **kwargs)
520

521
522
523
    assert prototype_transform.get_params is legacy_transform.get_params


524
@get_params_parametrization
525
526
527
528
529
530
531
532
533
def test_get_params_jit(config, get_params_args_kwargs):
    get_params_args, get_params_kwargs = get_params_args_kwargs

    torch.jit.script(config.prototype_cls.get_params)(*get_params_args, **get_params_kwargs)

    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    transform = config.prototype_cls(*args, **kwargs)
534

535
    torch.jit.script(transform.get_params)(*get_params_args, **get_params_kwargs)
536
537


538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
@pytest.mark.parametrize(
    ("config", "args_kwargs"),
    [
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
        for config in CONSISTENCY_CONFIGS
        for idx, args_kwargs in enumerate(config.args_kwargs)
        if not isinstance(args_kwargs, NotScriptableArgsKwargs)
    ],
)
def test_jit_consistency(config, args_kwargs):
    args, kwargs = args_kwargs

    prototype_transform_eager = config.prototype_cls(*args, **kwargs)
    legacy_transform_eager = config.legacy_cls(*args, **kwargs)

    legacy_transform_scripted = torch.jit.script(legacy_transform_eager)
    prototype_transform_scripted = torch.jit.script(prototype_transform_eager)

    for image in make_images(**config.make_images_kwargs):
        image = image.as_subclass(torch.Tensor)

        torch.manual_seed(0)
        output_legacy_scripted = legacy_transform_scripted(image)

        torch.manual_seed(0)
        output_prototype_scripted = prototype_transform_scripted(image)

        assert_close(output_prototype_scripted, output_legacy_scripted, **config.closeness_kwargs)


570
571
572
573
574
575
576
577
578
579
class TestContainerTransforms:
    """
    Since we are testing containers here, we also need some transforms to wrap. Thus, testing a container transform for
    consistency automatically tests the wrapped transforms consistency.

    Instead of complicated mocking or creating custom transforms just for these tests, here we use deterministic ones
    that were already tested for consistency above.
    """

    def test_compose(self):
580
        prototype_transform = v2_transforms.Compose(
581
            [
582
583
                v2_transforms.Resize(256),
                v2_transforms.CenterCrop(224),
584
585
586
587
588
589
590
591
592
            ]
        )
        legacy_transform = legacy_transforms.Compose(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ]
        )

593
594
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
595
596

    @pytest.mark.parametrize("p", [0, 0.1, 0.5, 0.9, 1])
597
598
    @pytest.mark.parametrize("sequence_type", [list, nn.ModuleList])
    def test_random_apply(self, p, sequence_type):
599
        prototype_transform = v2_transforms.RandomApply(
600
601
            sequence_type(
                [
602
603
                    v2_transforms.Resize(256),
                    v2_transforms.CenterCrop(224),
604
605
                ]
            ),
606
607
608
            p=p,
        )
        legacy_transform = legacy_transforms.RandomApply(
609
610
611
612
613
614
            sequence_type(
                [
                    legacy_transforms.Resize(256),
                    legacy_transforms.CenterCrop(224),
                ]
            ),
615
616
617
            p=p,
        )

618
619
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
620

621
622
623
624
625
        if sequence_type is nn.ModuleList:
            # quick and dirty test that it is jit-scriptable
            scripted = torch.jit.script(prototype_transform)
            scripted(torch.rand(1, 3, 300, 300))

626
    # We can't test other values for `p` since the random parameter generation is different
627
628
    @pytest.mark.parametrize("probabilities", [(0, 1), (1, 0)])
    def test_random_choice(self, probabilities):
629
        prototype_transform = v2_transforms.RandomChoice(
630
            [
631
                v2_transforms.Resize(256),
632
633
                legacy_transforms.CenterCrop(224),
            ],
634
            p=probabilities,
635
636
637
638
639
640
        )
        legacy_transform = legacy_transforms.RandomChoice(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ],
641
            p=probabilities,
642
643
        )

644
645
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
646
647


648
649
class TestToTensorTransforms:
    def test_pil_to_tensor(self):
650
        prototype_transform = v2_transforms.PILToTensor()
651
652
        legacy_transform = legacy_transforms.PILToTensor()

653
        for image in make_images(extra_dims=[()]):
654
            image_pil = to_pil_image(image)
655
656
657
658

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))

    def test_to_tensor(self):
659
        with pytest.warns(UserWarning, match=re.escape("The transform `ToTensor()` is deprecated")):
660
            prototype_transform = v2_transforms.ToTensor()
661
662
        legacy_transform = legacy_transforms.ToTensor()

663
        for image in make_images(extra_dims=[()]):
664
            image_pil = to_pil_image(image)
665
666
667
668
            image_numpy = np.array(image_pil)

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))
            assert_equal(prototype_transform(image_numpy), legacy_transform(image_numpy))
669
670


671
def import_transforms_from_references(reference):
672
673
674
675
676
677
678
679
680
681
    HERE = Path(__file__).parent
    PROJECT_ROOT = HERE.parent

    loader = importlib.machinery.SourceFileLoader(
        "transforms", str(PROJECT_ROOT / "references" / reference / "transforms.py")
    )
    spec = importlib.util.spec_from_loader("transforms", loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
    return module
682
683
684


det_transforms = import_transforms_from_references("detection")
685
686
687


class TestRefDetTransforms:
688
    def make_tv_tensors(self, with_mask=True):
689
690
691
        size = (600, 800)
        num_objects = 22

692
693
694
        def make_label(extra_dims, categories):
            return torch.randint(categories, extra_dims, dtype=torch.int64)

695
        pil_image = to_pil_image(make_image(size=size, color_space="RGB"))
696
        target = {
697
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
698
699
700
701
702
703
704
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (pil_image, target)

705
        tensor_image = torch.Tensor(make_image(size=size, color_space="RGB", dtype=torch.float32))
706
        target = {
707
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
708
709
710
711
712
713
714
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (tensor_image, target)

715
        tv_tensor_image = make_image(size=size, color_space="RGB", dtype=torch.float32)
716
        target = {
717
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
718
719
720
721
722
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

723
        yield (tv_tensor_image, target)
724
725
726
727

    @pytest.mark.parametrize(
        "t_ref, t, data_kwargs",
        [
728
            (det_transforms.RandomHorizontalFlip(p=1.0), v2_transforms.RandomHorizontalFlip(p=1.0), {}),
729
730
731
732
733
            (
                det_transforms.RandomIoUCrop(),
                v2_transforms.Compose(
                    [
                        v2_transforms.RandomIoUCrop(),
734
                        v2_transforms.SanitizeBoundingBoxes(labels_getter=lambda sample: sample[1]["labels"]),
735
736
737
738
                    ]
                ),
                {"with_mask": False},
            ),
739
            (det_transforms.RandomZoomOut(), v2_transforms.RandomZoomOut(), {"with_mask": False}),
740
            (det_transforms.ScaleJitter((1024, 1024)), v2_transforms.ScaleJitter((1024, 1024), antialias=True), {}),
741
742
743
744
            (
                det_transforms.RandomShortestSize(
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
745
                v2_transforms.RandomShortestSize(
746
747
748
749
750
751
752
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
                {},
            ),
        ],
    )
    def test_transform(self, t_ref, t, data_kwargs):
753
        for dp in self.make_tv_tensors(**data_kwargs):
754
755
756
757
758
759
760
761
762

            # We should use prototype transform first as reference transform performs inplace target update
            torch.manual_seed(12)
            output = t(dp)

            torch.manual_seed(12)
            expected_output = t_ref(*dp)

            assert_equal(expected_output, output)
763
764
765
766
767
768
769
770
771


seg_transforms = import_transforms_from_references("segmentation")


# We need this transform for two reasons:
# 1. transforms.RandomCrop uses a different scheme to pad images and masks of insufficient size than its name
#    counterpart in the detection references. Thus, we cannot use it with `pad_if_needed=True`
# 2. transforms.Pad only supports a fixed padding, but the segmentation datasets don't have a fixed image size.
772
class PadIfSmaller(v2_transforms.Transform):
773
774
775
    def __init__(self, size, fill=0):
        super().__init__()
        self.size = size
776
        self.fill = v2_transforms._geometry._setup_fill_arg(fill)
777
778

    def _get_params(self, sample):
Philip Meier's avatar
Philip Meier committed
779
        height, width = query_size(sample)
780
781
782
783
784
785
786
787
        padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)]
        needs_padding = any(padding)
        return dict(padding=padding, needs_padding=needs_padding)

    def _transform(self, inpt, params):
        if not params["needs_padding"]:
            return inpt

788
        fill = _get_fill(self.fill, type(inpt))
789
        return prototype_F.pad(inpt, padding=params["padding"], fill=fill)
790
791
792


class TestRefSegTransforms:
793
    def make_tv_tensors(self, supports_pil=True, image_dtype=torch.uint8):
794
        size = (256, 460)
795
796
797
798
        num_categories = 21

        conv_fns = []
        if supports_pil:
799
            conv_fns.append(to_pil_image)
800
801
802
        conv_fns.extend([torch.Tensor, lambda x: x])

        for conv_fn in conv_fns:
803
804
            tv_tensor_image = make_image(size=size, color_space="RGB", dtype=image_dtype)
            tv_tensor_mask = make_segmentation_mask(size=size, num_categories=num_categories, dtype=torch.uint8)
805

806
            dp = (conv_fn(tv_tensor_image), tv_tensor_mask)
807
            dp_ref = (
808
809
                to_pil_image(tv_tensor_image) if supports_pil else tv_tensor_image.as_subclass(torch.Tensor),
                to_pil_image(tv_tensor_mask),
810
811
812
813
814
815
816
817
818
            )

            yield dp, dp_ref

    def set_seed(self, seed=12):
        torch.manual_seed(seed)
        random.seed(seed)

    def check(self, t, t_ref, data_kwargs=None):
819
        for dp, dp_ref in self.make_tv_tensors(**data_kwargs or dict()):
820
821

            self.set_seed()
822
            actual = actual_image, actual_mask = t(dp)
823
824

            self.set_seed()
825
826
827
828
829
            expected_image, expected_mask = t_ref(*dp_ref)
            if isinstance(actual_image, torch.Tensor) and not isinstance(expected_image, torch.Tensor):
                expected_image = legacy_F.pil_to_tensor(expected_image)
            expected_mask = legacy_F.pil_to_tensor(expected_mask).squeeze(0)
            expected = (expected_image, expected_mask)
830

831
            assert_equal(actual, expected)
832
833
834
835
836
837

    @pytest.mark.parametrize(
        ("t_ref", "t", "data_kwargs"),
        [
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=1.0),
838
                v2_transforms.RandomHorizontalFlip(p=1.0),
839
840
841
842
                dict(),
            ),
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=0.0),
843
                v2_transforms.RandomHorizontalFlip(p=0.0),
844
845
846
847
                dict(),
            ),
            (
                seg_transforms.RandomCrop(size=480),
848
                v2_transforms.Compose(
849
                    [
850
                        PadIfSmaller(size=480, fill={tv_tensors.Mask: 255, "others": 0}),
851
                        v2_transforms.RandomCrop(size=480),
852
853
854
855
856
857
                    ]
                ),
                dict(),
            ),
            (
                seg_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
858
                v2_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
859
860
861
862
863
864
865
                dict(supports_pil=False, image_dtype=torch.float),
            ),
        ],
    )
    def test_common(self, t_ref, t, data_kwargs):
        self.check(t, t_ref, data_kwargs)

866
867
868
869
870
871
872
873
874
875
876
877

@pytest.mark.parametrize(
    ("legacy_dispatcher", "name_only_params"),
    [
        (legacy_F.get_dimensions, {}),
        (legacy_F.get_image_size, {}),
        (legacy_F.get_image_num_channels, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.pil_to_tensor, {}),
        (legacy_F.convert_image_dtype, {}),
        (legacy_F.to_pil_image, {}),
        (legacy_F.normalize, {}),
878
        (legacy_F.resize, {"interpolation"}),
879
880
881
        (legacy_F.pad, {"padding", "fill"}),
        (legacy_F.crop, {}),
        (legacy_F.center_crop, {}),
882
        (legacy_F.resized_crop, {"interpolation"}),
883
        (legacy_F.hflip, {}),
884
        (legacy_F.perspective, {"startpoints", "endpoints", "fill", "interpolation"}),
885
886
887
888
889
890
891
892
        (legacy_F.vflip, {}),
        (legacy_F.five_crop, {}),
        (legacy_F.ten_crop, {}),
        (legacy_F.adjust_brightness, {}),
        (legacy_F.adjust_contrast, {}),
        (legacy_F.adjust_saturation, {}),
        (legacy_F.adjust_hue, {}),
        (legacy_F.adjust_gamma, {}),
893
894
        (legacy_F.rotate, {"center", "fill", "interpolation"}),
        (legacy_F.affine, {"angle", "translate", "center", "fill", "interpolation"}),
895
896
897
898
899
900
901
902
903
904
905
        (legacy_F.to_grayscale, {}),
        (legacy_F.rgb_to_grayscale, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.erase, {}),
        (legacy_F.gaussian_blur, {}),
        (legacy_F.invert, {}),
        (legacy_F.posterize, {}),
        (legacy_F.solarize, {}),
        (legacy_F.adjust_sharpness, {}),
        (legacy_F.autocontrast, {}),
        (legacy_F.equalize, {}),
906
        (legacy_F.elastic_transform, {"fill", "interpolation"}),
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
    ],
)
def test_dispatcher_signature_consistency(legacy_dispatcher, name_only_params):
    legacy_signature = inspect.signature(legacy_dispatcher)
    legacy_params = list(legacy_signature.parameters.values())[1:]

    try:
        prototype_dispatcher = getattr(prototype_F, legacy_dispatcher.__name__)
    except AttributeError:
        raise AssertionError(
            f"Legacy dispatcher `F.{legacy_dispatcher.__name__}` has no prototype equivalent"
        ) from None

    prototype_signature = inspect.signature(prototype_dispatcher)
    prototype_params = list(prototype_signature.parameters.values())[1:]

    # Some dispatchers got extra parameters. This makes sure they have a default argument and thus are BC. We don't
    # need to check if parameters were added in the middle rather than at the end, since that will be caught by the
    # regular check below.
    prototype_params, new_prototype_params = (
        prototype_params[: len(legacy_params)],
        prototype_params[len(legacy_params) :],
    )
    for param in new_prototype_params:
        assert param.default is not param.empty

    # Some annotations were changed mostly to supersets of what was there before. Plus, some legacy dispatchers had no
    # annotations. In these cases we simply drop the annotation and default argument from the comparison
    for prototype_param, legacy_param in zip(prototype_params, legacy_params):
        if legacy_param.name in name_only_params:
            prototype_param._annotation = prototype_param._default = inspect.Parameter.empty
            legacy_param._annotation = legacy_param._default = inspect.Parameter.empty
        elif legacy_param.annotation is inspect.Parameter.empty:
            prototype_param._annotation = inspect.Parameter.empty

    assert prototype_params == legacy_params