functional_tensor.py 45 KB
Newer Older
vfdev's avatar
vfdev committed
1
import warnings
2
from typing import Optional, Tuple
vfdev's avatar
vfdev committed
3

4
import torch
5
from torch import Tensor
6
from torch.nn.functional import grid_sample, conv2d, interpolate, pad as torch_pad
7
from torch.jit.annotations import List, BroadcastingList2
8
9


vfdev's avatar
vfdev committed
10
11
def _is_tensor_a_torch_image(x: Tensor) -> bool:
    return x.ndim >= 2
12
13


vfdev's avatar
vfdev committed
14
def _get_image_size(img: Tensor) -> List[int]:
vfdev's avatar
vfdev committed
15
    """Returns (w, h) of tensor image"""
vfdev's avatar
vfdev committed
16
17
    if _is_tensor_a_torch_image(img):
        return [img.shape[-1], img.shape[-2]]
18
    raise TypeError("Unexpected input type")
vfdev's avatar
vfdev committed
19
20


21
22
23
24
25
26
def _get_image_num_channels(img: Tensor) -> int:
    if img.ndim == 2:
        return 1
    elif img.ndim > 2:
        return img.shape[-3]

27
    raise TypeError("Input ndim should be 2 or more. Got {}".format(img.ndim))
28
29


30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def _max_value(dtype: torch.dtype) -> float:
    # TODO: replace this method with torch.iinfo when it gets torchscript support.
    # https://github.com/pytorch/pytorch/issues/41492

    a = torch.tensor(2, dtype=dtype)
    signed = 1 if torch.tensor(0, dtype=dtype).is_signed() else 0
    bits = 1
    max_value = torch.tensor(-signed, dtype=torch.long)
    while True:
        next_value = a.pow(bits - signed).sub(1)
        if next_value > max_value:
            max_value = next_value
            bits *= 2
        else:
            return max_value.item()
    return max_value.item()


48
49
50
51
52
53
def _assert_channels(img: Tensor, permitted: List[int]) -> None:
    c = _get_image_num_channels(img)
    if c not in permitted:
        raise TypeError("Input image tensor permitted channel values are {}, but found {}".format(permitted, c))


54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """PRIVATE METHOD. Convert a tensor image to the given ``dtype`` and scale the values accordingly

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
        (torch.Tensor): Converted image

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
    if image.dtype == dtype:
        return image

    # TODO: replace with image.dtype.is_floating_point when torchscript supports it
    if torch.empty(0, dtype=image.dtype).is_floating_point():

        # TODO: replace with dtype.is_floating_point when torchscript supports it
        if torch.tensor(0, dtype=dtype).is_floating_point():
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely."
            raise RuntimeError(msg)

        # https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
        # For data in the range 0-1, (float * 255).to(uint) is only 255
        # when float is exactly 1.0.
        # `max + 1 - epsilon` provides more evenly distributed mapping of
        # ranges of floats to ints.
        eps = 1e-3
        max_val = _max_value(dtype)
        result = image.mul(max_val + 1.0 - eps)
        return result.to(dtype)
    else:
        input_max = _max_value(image.dtype)
        output_max = _max_value(dtype)

        # int to float
        # TODO: replace with dtype.is_floating_point when torchscript supports it
        if torch.tensor(0, dtype=dtype).is_floating_point():
            image = image.to(dtype)
            return image / input_max

        # int to int
        if input_max > output_max:
            # factor should be forced to int for torch jit script
            # otherwise factor is a float and image // factor can produce different results
            factor = int((input_max + 1) // (output_max + 1))
            image = image // factor
            return image.to(dtype)
        else:
            # factor should be forced to int for torch jit script
            # otherwise factor is a float and image * factor can produce different results
            factor = int((output_max + 1) // (input_max + 1))
            image = image.to(dtype)
            return image * factor


vfdev's avatar
vfdev committed
131
def vflip(img: Tensor) -> Tensor:
132
133
134
135
136
137
    """PRIVATE METHOD. Vertically flip the given the Image Tensor.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
138
139

    Args:
140
        img (Tensor): Image Tensor to be flipped in the form [..., C, H, W].
141
142
143
144

    Returns:
        Tensor:  Vertically flipped image Tensor.
    """
145
    if not _is_tensor_a_torch_image(img):
146
147
        raise TypeError('tensor is not a torch image.')

148
    return img.flip(-2)
149
150


vfdev's avatar
vfdev committed
151
def hflip(img: Tensor) -> Tensor:
152
153
154
155
156
157
    """PRIVATE METHOD. Horizontally flip the given the Image Tensor.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
158
159

    Args:
160
        img (Tensor): Image Tensor to be flipped in the form [..., C, H, W].
161
162
163
164

    Returns:
        Tensor:  Horizontally flipped image Tensor.
    """
165
    if not _is_tensor_a_torch_image(img):
166
167
        raise TypeError('tensor is not a torch image.')

168
    return img.flip(-1)
ekka's avatar
ekka committed
169
170


vfdev's avatar
vfdev committed
171
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
172
173
174
175
176
177
    """PRIVATE METHOD. Crop the given Image Tensor.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
178

ekka's avatar
ekka committed
179
    Args:
vfdev's avatar
vfdev committed
180
        img (Tensor): Image to be cropped in the form [..., H, W]. (0,0) denotes the top left corner of the image.
ekka's avatar
ekka committed
181
182
183
184
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
185

ekka's avatar
ekka committed
186
187
188
    Returns:
        Tensor: Cropped image.
    """
189
    if not _is_tensor_a_torch_image(img):
vfdev's avatar
vfdev committed
190
        raise TypeError("tensor is not a torch image.")
ekka's avatar
ekka committed
191
192

    return img[..., top:top + height, left:left + width]
193
194


195
def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
196
197
198
199
200
201
202
    """PRIVATE METHOD. Convert the given RGB Image Tensor to Grayscale.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

203
204
205
206
207
    For RGB to Grayscale conversion, ITU-R 601-2 luma transform is performed which
    is L = R * 0.2989 + G * 0.5870 + B * 0.1140

    Args:
        img (Tensor): Image to be converted to Grayscale in the form [C, H, W].
208
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.
209
210

    Returns:
211
212
213
214
        Tensor: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
215
216

    """
217
218
    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))
219
    _assert_channels(img, [3])
220
221
222
223
224
225
226
227
228
229
230
231

    if num_output_channels not in (1, 3):
        raise ValueError('num_output_channels should be either 1 or 3')

    r, g, b = img.unbind(dim=-3)
    # This implementation closely follows the TF one:
    # https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/ops/image_ops_impl.py#L2105-L2138
    l_img = (0.2989 * r + 0.587 * g + 0.114 * b).to(img.dtype)
    l_img = l_img.unsqueeze(dim=-3)

    if num_output_channels == 3:
        return l_img.expand(img.shape)
232

233
    return l_img
234
235


vfdev's avatar
vfdev committed
236
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
237
    """PRIVATE METHOD. Adjust brightness of a Grayscale or RGB image.
238
239
240
241
242

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
243
244
245
246
247
248
249
250
251
252

    Args:
        img (Tensor): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        Tensor: Brightness adjusted image.
    """
253
254
255
    if brightness_factor < 0:
        raise ValueError('brightness_factor ({}) is not non-negative.'.format(brightness_factor))

256
    if not _is_tensor_a_torch_image(img):
257
258
        raise TypeError('tensor is not a torch image.')

259
260
    _assert_channels(img, [1, 3])

261
    return _blend(img, torch.zeros_like(img), brightness_factor)
262
263


vfdev's avatar
vfdev committed
264
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
265
266
267
268
269
270
    """PRIVATE METHOD. Adjust contrast of an RGB image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
271
272
273
274
275
276
277
278
279
280

    Args:
        img (Tensor): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        Tensor: Contrast adjusted image.
    """
281
282
283
    if contrast_factor < 0:
        raise ValueError('contrast_factor ({}) is not non-negative.'.format(contrast_factor))

284
    if not _is_tensor_a_torch_image(img):
285
286
        raise TypeError('tensor is not a torch image.')

287
288
    _assert_channels(img, [3])

289
290
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    mean = torch.mean(rgb_to_grayscale(img).to(dtype), dim=(-3, -2, -1), keepdim=True)
291
292
293
294

    return _blend(img, mean, contrast_factor)


295
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
296
    """PRIVATE METHOD. Adjust hue of an RGB image.
297
298
299
300
301

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue

    Args:
        img (Tensor): Image to be adjusted. Image type is either uint8 or float.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
         Tensor: Hue adjusted image.
    """
325
    if not (-0.5 <= hue_factor <= 0.5):
326
327
        raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor))

328
    if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)):
329
        raise TypeError('Input img should be Tensor image')
330

331
332
    _assert_channels(img, [3])

333
334
335
336
337
    orig_dtype = img.dtype
    if img.dtype == torch.uint8:
        img = img.to(dtype=torch.float32) / 255.0

    img = _rgb2hsv(img)
338
    h, s, v = img.unbind(dim=-3)
339
    h = (h + hue_factor) % 1.0
340
    img = torch.stack((h, s, v), dim=-3)
341
342
343
344
345
346
347
348
    img_hue_adj = _hsv2rgb(img)

    if orig_dtype == torch.uint8:
        img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype)

    return img_hue_adj


vfdev's avatar
vfdev committed
349
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
350
351
352
353
354
355
    """PRIVATE METHOD. Adjust color saturation of an RGB image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
356
357
358

    Args:
        img (Tensor): Image to be adjusted.
359
360
361
        saturation_factor (float):  How much to adjust the saturation. Can be any
            non negative number. 0 gives a black and white image, 1 gives the
            original image while 2 enhances the saturation by a factor of 2.
362
363
364
365

    Returns:
        Tensor: Saturation adjusted image.
    """
366
367
368
    if saturation_factor < 0:
        raise ValueError('saturation_factor ({}) is not non-negative.'.format(saturation_factor))

369
    if not _is_tensor_a_torch_image(img):
370
371
        raise TypeError('tensor is not a torch image.')

372
373
    _assert_channels(img, [3])

374
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
375
376


377
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
378
    r"""PRIVATE METHOD. Adjust gamma of a Grayscale or RGB image.
379
380
381
382
383

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

    .. math::
        `I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}`

    See `Gamma Correction`_ for more details.

    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction

    Args:
        img (Tensor): Tensor of RBG values to be adjusted.
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
        gain (float): The constant multiplier.
    """

    if not isinstance(img, torch.Tensor):
404
        raise TypeError('Input img should be a Tensor.')
405

406
407
    _assert_channels(img, [1, 3])

408
409
410
411
412
413
    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    result = img
    dtype = img.dtype
    if not torch.is_floating_point(img):
414
        result = convert_image_dtype(result, torch.float32)
415
416
417

    result = (gain * result ** gamma).clamp(0, 1)

418
    result = convert_image_dtype(result, dtype)
419
420
421
422
    result = result.to(dtype)
    return result


vfdev's avatar
vfdev committed
423
def center_crop(img: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
424
425
    """DEPRECATED. Crop the Image Tensor and resize it to desired size.

426
427
428
429
430
    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

431
432
433
434
    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.center_crop`` instead.
435
436

    Args:
vfdev's avatar
vfdev committed
437
        img (Tensor): Image to be cropped.
438
439
440
441
442
443
        output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions

    Returns:
            Tensor: Cropped image.
    """
444
445
446
447
448
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.center_crop`` instead."
    )

449
    if not _is_tensor_a_torch_image(img):
450
451
452
453
        raise TypeError('tensor is not a torch image.')

    _, image_width, image_height = img.size()
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
454
455
456
457
458
459
460
461
    # crop_top = int(round((image_height - crop_height) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_top = int((image_height - crop_height + 1) * 0.5)
    # crop_left = int(round((image_width - crop_width) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_left = int((image_width - crop_width + 1) * 0.5)
462
463
464
465

    return crop(img, crop_top, crop_left, crop_height, crop_width)


vfdev's avatar
vfdev committed
466
def five_crop(img: Tensor, size: BroadcastingList2[int]) -> List[Tensor]:
467
468
    """DEPRECATED. Crop the given Image Tensor into four corners and the central crop.

469
470
471
472
473
    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

474
475
476
477
478
    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.five_crop`` instead.

479
    .. Note::
480

481
        This transform returns a List of Tensors and there may be a
482
483
484
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
485
486
487
488
        img (Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
489
490

    Returns:
491
       List: List (tl, tr, bl, br, center)
492
493
                Corresponding top left, top right, bottom left, bottom right and center crop.
    """
494
495
496
497
498
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.five_crop`` instead."
    )

499
    if not _is_tensor_a_torch_image(img):
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    _, image_width, image_height = img.size()
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = crop(img, 0, 0, crop_width, crop_height)
    tr = crop(img, image_width - crop_width, 0, image_width, crop_height)
    bl = crop(img, 0, image_height - crop_height, crop_width, image_height)
    br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height)
    center = center_crop(img, (crop_height, crop_width))

516
    return [tl, tr, bl, br, center]
517
518


vfdev's avatar
vfdev committed
519
def ten_crop(img: Tensor, size: BroadcastingList2[int], vertical_flip: bool = False) -> List[Tensor]:
520
    """DEPRECATED. Crop the given Image Tensor into four corners and the central crop plus the
521
        flipped version of these (horizontal flipping is used by default).
vfdev's avatar
vfdev committed
522

523
524
525
526
527
    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

528
529
530
531
532
    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.ten_crop`` instead.

533
    .. Note::
534

535
        This transform returns a List of images and there may be a
536
537
538
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
539
540
        img (Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
541
542
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
vfdev's avatar
vfdev committed
543
        vertical_flip (bool): Use vertical flipping instead of horizontal
544
545

    Returns:
546
       List: List (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
547
548
549
                Corresponding top left, top right, bottom left, bottom right and center crop
                and same for the flipped image's tensor.
    """
550
551
552
553
554
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.ten_crop`` instead."
    )

555
    if not _is_tensor_a_torch_image(img):
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)

    return first_five + second_five


vfdev's avatar
vfdev committed
571
def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor:
572
573
    bound = 1.0 if img1.is_floating_point() else 255.0
    return (ratio * img1 + (1.0 - ratio) * img2).clamp(0, bound).to(img1.dtype)
574
575
576


def _rgb2hsv(img):
577
    r, g, b = img.unbind(dim=-3)
578

579
580
    # Implementation is based on https://github.com/python-pillow/Pillow/blob/4174d4267616897df3746d315d5a2d0f82c656ee/
    # src/libImaging/Convert.c#L330
581
582
    maxc = torch.max(img, dim=-3).values
    minc = torch.min(img, dim=-3).values
583
584
585
586
587
588
589
590
591
592

    # The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
    # from happening in the results, because
    #   + S channel has division by `maxc`, which is zero only if `maxc = minc`
    #   + H channel has division by `(maxc - minc)`.
    #
    # Instead of overwriting NaN afterwards, we just prevent it from occuring so
    # we don't need to deal with it in case we save the NaN in a buffer in
    # backprop, if it is ever supported, but it doesn't hurt to do so.
    eqc = maxc == minc
593
594

    cr = maxc - minc
595
    # Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
596
597
    ones = torch.ones_like(maxc)
    s = cr / torch.where(eqc, ones, maxc)
598
599
600
601
    # Note that `eqc => maxc = minc = r = g = b`. So the following calculation
    # of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
    # would not matter what values `rc`, `gc`, and `bc` have here, and thus
    # replacing denominator with 1 when `eqc` is fine.
602
    cr_divisor = torch.where(eqc, ones, cr)
603
604
605
    rc = (maxc - r) / cr_divisor
    gc = (maxc - g) / cr_divisor
    bc = (maxc - b) / cr_divisor
606
607
608
609
610
611

    hr = (maxc == r) * (bc - gc)
    hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
    hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
    h = (hr + hg + hb)
    h = torch.fmod((h / 6.0 + 1.0), 1.0)
612
    return torch.stack((h, s, maxc), dim=-3)
613
614
615


def _hsv2rgb(img):
616
    h, s, v = img.unbind(dim=-3)
617
618
619
620
621
622
623
624
625
    i = torch.floor(h * 6.0)
    f = (h * 6.0) - i
    i = i.to(dtype=torch.int32)

    p = torch.clamp((v * (1.0 - s)), 0.0, 1.0)
    q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0)
    t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0)
    i = i % 6

626
    mask = i.unsqueeze(dim=-3) == torch.arange(6, device=i.device).view(-1, 1, 1)
627

628
629
630
631
    a1 = torch.stack((v, q, p, p, t, v), dim=-3)
    a2 = torch.stack((t, v, v, q, p, p), dim=-3)
    a3 = torch.stack((p, p, t, v, v, q), dim=-3)
    a4 = torch.stack((a1, a2, a3), dim=-4)
632

633
    return torch.einsum("...ijk, ...xijk -> ...xjk", mask.to(dtype=img.dtype), a4)
634
635


636
637
def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor:
    # padding is left, right, top, bottom
638
639
640
641
642
643
644

    # crop if needed
    if padding[0] < 0 or padding[1] < 0 or padding[2] < 0 or padding[3] < 0:
        crop_left, crop_right, crop_top, crop_bottom = [-min(x, 0) for x in padding]
        img = img[..., crop_top:img.shape[-2] - crop_bottom, crop_left:img.shape[-1] - crop_right]
        padding = [max(x, 0) for x in padding]

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    in_sizes = img.size()

    x_indices = [i for i in range(in_sizes[-1])]  # [0, 1, 2, 3, ...]
    left_indices = [i for i in range(padding[0] - 1, -1, -1)]  # e.g. [3, 2, 1, 0]
    right_indices = [-(i + 1) for i in range(padding[1])]  # e.g. [-1, -2, -3]
    x_indices = torch.tensor(left_indices + x_indices + right_indices)

    y_indices = [i for i in range(in_sizes[-2])]
    top_indices = [i for i in range(padding[2] - 1, -1, -1)]
    bottom_indices = [-(i + 1) for i in range(padding[3])]
    y_indices = torch.tensor(top_indices + y_indices + bottom_indices)

    ndim = img.ndim
    if ndim == 3:
        return img[:, y_indices[:, None], x_indices[None, :]]
    elif ndim == 4:
        return img[:, :, y_indices[:, None], x_indices[None, :]]
    else:
        raise RuntimeError("Symmetric padding of N-D tensors are not supported yet")


666
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
667
668
669
670
671
672
    r"""PRIVATE METHOD. Pad the given Tensor Image on all sides with specified padding mode and fill value.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
673
674
675
676
677
678
679
680
681
682
683

    Args:
        img (Tensor): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
            is used to pad all borders. If a tuple or list of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple or list of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively. In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
        fill (int): Pixel fill value for constant fill. Default is 0.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
684
685
        padding_mode (str): Type of padding. Should be: constant, edge or reflect. Default is constant.
            Mode symmetric is not yet supported for Tensor inputs.
686
687
688

            - constant: pads with a constant value, this value is specified with fill

689
690
691
692
693
694
695
            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

696
697
698
699
700
            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
    Returns:
        Tensor: Padded image.
    """
    if not _is_tensor_a_torch_image(img):
        raise TypeError("tensor is not a torch image.")

    if not isinstance(padding, (int, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (int, float)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, tuple):
        padding = list(padding)

    if isinstance(padding, list) and len(padding) not in [1, 2, 4]:
        raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

721
722
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
723
724
725

    if isinstance(padding, int):
        if torch.jit.is_scripting():
vfdev's avatar
vfdev committed
726
            # This maybe unreachable
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
            raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]")
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 1:
        pad_left = pad_right = pad_top = pad_bottom = padding[0]
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    p = [pad_left, pad_right, pad_top, pad_bottom]

742
743
744
    if padding_mode == "edge":
        # remap padding_mode str
        padding_mode = "replicate"
745
746
747
    elif padding_mode == "symmetric":
        # route to another implementation
        return _pad_symmetric(img, p)
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
    if (padding_mode != "constant") and img.dtype not in (torch.float32, torch.float64):
        # Here we temporary cast input tensor to float
        # until pytorch issue is resolved :
        # https://github.com/pytorch/pytorch/issues/40763
        need_cast = True
        img = img.to(torch.float32)

763
    img = torch_pad(img, p, mode=padding_mode, value=float(fill))
764
765
766
767
768
769
770

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        img = img.to(out_dtype)

771
    return img
vfdev's avatar
vfdev committed
772
773


774
def resize(img: Tensor, size: List[int], interpolation: str = "bilinear") -> Tensor:
775
776
777
778
779
780
    r"""PRIVATE METHOD. Resize the input Tensor to the given size.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
vfdev's avatar
vfdev committed
781
782
783
784
785
786
787
788
789
790

    Args:
        img (Tensor): Image to be resized.
        size (int or tuple or list): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaining
            the aspect ratio. i.e, if height > width, then image will be rescaled to
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
            In torchscript mode padding as a single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
791
792
        interpolation (str): Desired interpolation. Default is "bilinear". Other supported values:
            "nearest" and "bicubic".
vfdev's avatar
vfdev committed
793
794
795
796
797
798
799
800
801

    Returns:
        Tensor: Resized image.
    """
    if not _is_tensor_a_torch_image(img):
        raise TypeError("tensor is not a torch image.")

    if not isinstance(size, (int, tuple, list)):
        raise TypeError("Got inappropriate size arg")
802
    if not isinstance(interpolation, str):
vfdev's avatar
vfdev committed
803
804
        raise TypeError("Got inappropriate interpolation arg")

805
    if interpolation not in ["nearest", "bilinear", "bicubic"]:
vfdev's avatar
vfdev committed
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
        raise ValueError("This interpolation mode is unsupported with Tensor input")

    if isinstance(size, tuple):
        size = list(size)

    if isinstance(size, list) and len(size) not in [1, 2]:
        raise ValueError("Size must be an int or a 1 or 2 element tuple/list, not a "
                         "{} element tuple/list".format(len(size)))

    w, h = _get_image_size(img)

    if isinstance(size, int):
        size_w, size_h = size, size
    elif len(size) < 2:
        size_w, size_h = size[0], size[0]
    else:
822
        size_w, size_h = size[1], size[0]  # Convention (h, w)
vfdev's avatar
vfdev committed
823
824
825
826
827
828
829

    if isinstance(size, int) or len(size) < 2:
        if w < h:
            size_h = int(size_w * h / w)
        else:
            size_w = int(size_h * w / h)

830
831
        if (w <= h and w == size_w) or (h <= w and h == size_h):
            return img
vfdev's avatar
vfdev committed
832

vfdev's avatar
vfdev committed
833
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [torch.float32, torch.float64])
vfdev's avatar
vfdev committed
834
835

    # Define align_corners to avoid warnings
836
    align_corners = False if interpolation in ["bilinear", "bicubic"] else None
vfdev's avatar
vfdev committed
837

838
    img = interpolate(img, size=[size_h, size_w], mode=interpolation, align_corners=align_corners)
vfdev's avatar
vfdev committed
839

840
    if interpolation == "bicubic" and out_dtype == torch.uint8:
vfdev's avatar
vfdev committed
841
        img = img.clamp(min=0, max=255)
vfdev's avatar
vfdev committed
842

vfdev's avatar
vfdev committed
843
    img = _cast_squeeze_out(img, need_cast=need_cast, need_squeeze=need_squeeze, out_dtype=out_dtype)
vfdev's avatar
vfdev committed
844
845

    return img
vfdev's avatar
vfdev committed
846
847


vfdev's avatar
vfdev committed
848
def _assert_grid_transform_inputs(
849
850
        img: Tensor,
        matrix: Optional[List[float]],
851
        interpolation: str,
852
        fill: Optional[List[float]],
853
        supported_interpolation_modes: List[str],
854
        coeffs: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
855
856
):
    if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)):
857
        raise TypeError("Input img should be Tensor Image")
vfdev's avatar
vfdev committed
858

859
    if matrix is not None and not isinstance(matrix, list):
860
        raise TypeError("Argument matrix should be a list")
vfdev's avatar
vfdev committed
861

862
    if matrix is not None and len(matrix) != 6:
vfdev's avatar
vfdev committed
863
        raise ValueError("Argument matrix should have 6 float values")
vfdev's avatar
vfdev committed
864

865
866
867
    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

868
869
870
871
872
873
874
875
876
    if fill is not None and not isinstance(fill, (int, float, tuple, list)):
        warnings.warn("Argument fill should be either int, float, tuple or list")

    # Check fill
    num_channels = _get_image_num_channels(img)
    if isinstance(fill, (tuple, list)) and (len(fill) > 1 and len(fill) != num_channels):
        msg = ("The number of elements in 'fill' cannot broadcast to match the number of "
               "channels of the image ({} != {})")
        raise ValueError(msg.format(len(fill), num_channels))
vfdev's avatar
vfdev committed
877

878
879
    if interpolation not in supported_interpolation_modes:
        raise ValueError("Interpolation mode '{}' is unsupported with Tensor input".format(interpolation))
vfdev's avatar
vfdev committed
880
881


vfdev's avatar
vfdev committed
882
def _cast_squeeze_in(img: Tensor, req_dtypes: List[torch.dtype]) -> Tuple[Tensor, bool, bool, torch.dtype]:
vfdev's avatar
vfdev committed
883
    need_squeeze = False
884
    # make image NCHW
vfdev's avatar
vfdev committed
885
886
887
888
889
890
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
vfdev's avatar
vfdev committed
891
    if out_dtype not in req_dtypes:
vfdev's avatar
vfdev committed
892
        need_cast = True
vfdev's avatar
vfdev committed
893
        req_dtype = req_dtypes[0]
894
895
        img = img.to(req_dtype)
    return img, need_cast, need_squeeze, out_dtype
vfdev's avatar
vfdev committed
896
897


898
def _cast_squeeze_out(img: Tensor, need_cast: bool, need_squeeze: bool, out_dtype: torch.dtype):
vfdev's avatar
vfdev committed
899
900
901
902
    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
vfdev's avatar
vfdev committed
903
904
905
906
        if out_dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
            # it is better to round before cast
            img = torch.round(img)
        img = img.to(out_dtype)
vfdev's avatar
vfdev committed
907
908

    return img
vfdev's avatar
vfdev committed
909
910


911
def _apply_grid_transform(img: Tensor, grid: Tensor, mode: str, fill: Optional[List[float]]) -> Tensor:
912

vfdev's avatar
vfdev committed
913
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [grid.dtype, ])
914
915
916
917

    if img.shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(img.shape[0], grid.shape[1], grid.shape[2], grid.shape[3])
918
919
920
921
922
923

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        dummy = torch.ones((img.shape[0], 1, img.shape[2], img.shape[3]), dtype=img.dtype, device=img.device)
        img = torch.cat((img, dummy), dim=1)

924
925
    img = grid_sample(img, grid, mode=mode, padding_mode="zeros", align_corners=False)

926
927
928
929
930
931
932
933
934
935
936
937
938
    # Fill with required color
    if fill is not None:
        mask = img[:, -1:, :, :]  # N * 1 * H * W
        img = img[:, :-1, :, :]  # N * C * H * W
        mask = mask.expand_as(img)
        len_fill = len(fill) if isinstance(fill, (tuple, list)) else 1
        fill_img = torch.tensor(fill, dtype=img.dtype, device=img.device).view(1, len_fill, 1, 1).expand_as(img)
        if mode == 'nearest':
            mask = mask < 0.5
            img[mask] = fill_img[mask]
        else:  # 'bilinear'
            img = img * mask + (1.0 - mask) * fill_img

939
940
941
942
    img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
    return img


943
944
945
946
947
948
949
950
951
952
def _gen_affine_grid(
        theta: Tensor, w: int, h: int, ow: int, oh: int,
) -> Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate

    d = 0.5
953
    base_grid = torch.empty(1, oh, ow, 3, dtype=theta.dtype, device=theta.device)
954
955
956
957
    x_grid = torch.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, steps=ow, device=theta.device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, steps=oh, device=theta.device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
958
959
    base_grid[..., 2].fill_(1)

960
961
    rescaled_theta = theta.transpose(1, 2) / torch.tensor([0.5 * w, 0.5 * h], dtype=theta.dtype, device=theta.device)
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
962
963
964
    return output_grid.view(1, oh, ow, 2)


vfdev's avatar
vfdev committed
965
def affine(
966
        img: Tensor, matrix: List[float], interpolation: str = "nearest", fill: Optional[List[float]] = None
vfdev's avatar
vfdev committed
967
) -> Tensor:
968
969
970
971
972
973
    """PRIVATE METHOD. Apply affine transformation on the Tensor image keeping image center invariant.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
vfdev's avatar
vfdev committed
974
975
976
977

    Args:
        img (Tensor): image to be rotated.
        matrix (list of floats): list of 6 float values representing inverse matrix for affine transformation.
978
        interpolation (str): An optional resampling filter. Default is "nearest". Other supported values: "bilinear".
979
980
        fill (sequence or int or float, optional): Optional fill value, default None.
            If None, fill with 0.
vfdev's avatar
vfdev committed
981
982
983
984

    Returns:
        Tensor: Transformed image.
    """
985
    _assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
vfdev's avatar
vfdev committed
986

987
988
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
vfdev's avatar
vfdev committed
989
    shape = img.shape
990
    # grid will be generated on the same device as theta and img
991
    grid = _gen_affine_grid(theta, w=shape[-1], h=shape[-2], ow=shape[-1], oh=shape[-2])
992
    return _apply_grid_transform(img, grid, interpolation, fill=fill)
vfdev's avatar
vfdev committed
993
994


995
def _compute_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
vfdev's avatar
vfdev committed
996

997
998
999
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

vfdev's avatar
vfdev committed
1000
1001
    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    pts = torch.tensor([
1002
1003
1004
1005
        [-0.5 * w, -0.5 * h, 1.0],
        [-0.5 * w, 0.5 * h, 1.0],
        [0.5 * w, 0.5 * h, 1.0],
        [0.5 * w, -0.5 * h, 1.0],
vfdev's avatar
vfdev committed
1006
    ])
1007
    theta = torch.tensor(matrix, dtype=torch.float).reshape(1, 2, 3)
1008
    new_pts = pts.view(1, 4, 3).bmm(theta.transpose(1, 2)).view(4, 2)
vfdev's avatar
vfdev committed
1009
1010
1011
    min_vals, _ = new_pts.min(dim=0)
    max_vals, _ = new_pts.max(dim=0)

1012
1013
1014
1015
1016
1017
    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    cmax = torch.ceil((max_vals / tol).trunc_() * tol)
    cmin = torch.floor((min_vals / tol).trunc_() * tol)
    size = cmax - cmin
    return int(size[0]), int(size[1])
vfdev's avatar
vfdev committed
1018
1019
1020


def rotate(
1021
    img: Tensor, matrix: List[float], interpolation: str = "nearest",
1022
    expand: bool = False, fill: Optional[List[float]] = None
vfdev's avatar
vfdev committed
1023
) -> Tensor:
1024
1025
1026
1027
1028
1029
    """PRIVATE METHOD. Rotate the Tensor image by angle.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
vfdev's avatar
vfdev committed
1030
1031
1032
1033

    Args:
        img (Tensor): image to be rotated.
        matrix (list of floats): list of 6 float values representing inverse matrix for rotation transformation.
1034
            Translation part (``matrix[2]`` and ``matrix[5]``) should be in pixel coordinates.
1035
        interpolation (str): An optional resampling filter. Default is "nearest". Other supported values: "bilinear".
vfdev's avatar
vfdev committed
1036
1037
1038
1039
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1040
1041
        fill (sequence or int or float, optional): Optional fill value, default None.
            If None, fill with 0.
vfdev's avatar
vfdev committed
1042
1043
1044
1045
1046
1047
1048

    Returns:
        Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
1049
    _assert_grid_transform_inputs(img, matrix, interpolation, fill, ["nearest", "bilinear"])
1050
    w, h = img.shape[-1], img.shape[-2]
1051
    ow, oh = _compute_output_size(matrix, w, h) if expand else (w, h)
1052
1053
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
1054
    # grid will be generated on the same device as theta and img
1055
    grid = _gen_affine_grid(theta, w=w, h=h, ow=ow, oh=oh)
1056
1057

    return _apply_grid_transform(img, grid, interpolation, fill=fill)
1058
1059


1060
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device):
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor([[
        [coeffs[0], coeffs[1], coeffs[2]],
        [coeffs[3], coeffs[4], coeffs[5]]
1071
    ]], dtype=dtype, device=device)
1072
1073
1074
    theta2 = torch.tensor([[
        [coeffs[6], coeffs[7], 1.0],
        [coeffs[6], coeffs[7], 1.0]
1075
    ]], dtype=dtype, device=device)
1076
1077

    d = 0.5
1078
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
1079
1080
1081
1082
    x_grid = torch.linspace(d, ow * 1.0 + d - 1.0, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace(d, oh * 1.0 + d - 1.0, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
1083
1084
    base_grid[..., 2].fill_(1)

1085
    rescaled_theta1 = theta1.transpose(1, 2) / torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device)
1086
    output_grid1 = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta1)
1087
1088
1089
1090
1091
1092
1093
    output_grid2 = base_grid.view(1, oh * ow, 3).bmm(theta2.transpose(1, 2))

    output_grid = output_grid1 / output_grid2 - 1.0
    return output_grid.view(1, oh, ow, 2)


def perspective(
1094
    img: Tensor, perspective_coeffs: List[float], interpolation: str = "bilinear", fill: Optional[List[float]] = None
1095
) -> Tensor:
1096
1097
1098
1099
1100
1101
    """PRIVATE METHOD. Perform perspective transform of the given Tensor image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
1102
1103
1104
1105

    Args:
        img (Tensor): Image to be transformed.
        perspective_coeffs (list of float): perspective transformation coefficients.
1106
        interpolation (str): Interpolation type. Default, "bilinear".
1107
1108
        fill (sequence or int or float, optional): Optional fill value, default None.
            If None, fill with 0.
1109
1110
1111
1112
1113

    Returns:
        Tensor: transformed image.
    """
    if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)):
1114
        raise TypeError('Input img should be Tensor Image')
1115
1116
1117
1118

    _assert_grid_transform_inputs(
        img,
        matrix=None,
1119
1120
1121
        interpolation=interpolation,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
1122
1123
1124
1125
        coeffs=perspective_coeffs
    )

    ow, oh = img.shape[-1], img.shape[-2]
1126
1127
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=img.device)
1128
    return _apply_grid_transform(img, grid, interpolation, fill=fill)
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172


def _get_gaussian_kernel1d(kernel_size: int, sigma: float) -> Tensor:
    ksize_half = (kernel_size - 1) * 0.5

    x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
    pdf = torch.exp(-0.5 * (x / sigma).pow(2))
    kernel1d = pdf / pdf.sum()

    return kernel1d


def _get_gaussian_kernel2d(
        kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
) -> Tensor:
    kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0]).to(device, dtype=dtype)
    kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1]).to(device, dtype=dtype)
    kernel2d = torch.mm(kernel1d_y[:, None], kernel1d_x[None, :])
    return kernel2d


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: List[float]) -> Tensor:
    """PRIVATE METHOD. Performs Gaussian blurring on the img by given kernel.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

    Args:
        img (Tensor): Image to be blurred
        kernel_size (sequence of int or int): Kernel size of the Gaussian kernel ``(kx, ky)``.
        sigma (sequence of float or float, optional): Standard deviation of the Gaussian kernel ``(sx, sy)``.

    Returns:
        Tensor: An image that is blurred using gaussian kernel of given parameters
    """
    if not (isinstance(img, torch.Tensor) or _is_tensor_a_torch_image(img)):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype, device=img.device)
    kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1])

vfdev's avatar
vfdev committed
1173
    img, need_cast, need_squeeze, out_dtype = _cast_squeeze_in(img, [kernel.dtype, ])
1174
1175
1176
1177
1178
1179
1180
1181

    # padding = (left, right, top, bottom)
    padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
    img = torch_pad(img, padding, mode="reflect")
    img = conv2d(img, kernel, groups=img.shape[-3])

    img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
    return img