"docs/vscode:/vscode.git/clone" did not exist on "5b75a277423dd455df05b9789689c5414b334daf"
test_transforms_v2.py 41.2 KB
Newer Older
1
2
import itertools
import pathlib
3
import pickle
4
5
6
7
8
9
10
11
12
13
import random
import warnings

import numpy as np

import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms

14
from common_utils import assert_equal, cpu_and_cuda
15
from torch.utils._pytree import tree_flatten, tree_unflatten
16
from torchvision import tv_tensors
17
18
19
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.v2 import functional as F
Nicolas Hug's avatar
Nicolas Hug committed
20
from torchvision.transforms.v2._utils import check_type, is_pure_tensor, query_chw
21
from transforms_v2_legacy_utils import (
22
23
24
25
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
26
    make_multiple_bounding_boxes,
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    make_segmentation_mask,
    make_video,
    make_videos,
)


def make_vanilla_tensor_images(*args, **kwargs):
    for image in make_images(*args, **kwargs):
        if image.ndim > 3:
            continue
        yield image.data


def make_pil_images(*args, **kwargs):
    for image in make_vanilla_tensor_images(*args, **kwargs):
        yield to_pil_image(image)


def make_vanilla_tensor_bounding_boxes(*args, **kwargs):
46
    for bounding_boxes in make_multiple_bounding_boxes(*args, **kwargs):
47
        yield bounding_boxes.data
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68


def parametrize(transforms_with_inputs):
    return pytest.mark.parametrize(
        ("transform", "input"),
        [
            pytest.param(
                transform,
                input,
                id=f"{type(transform).__name__}-{type(input).__module__}.{type(input).__name__}-{idx}",
            )
            for transform, inputs in transforms_with_inputs
            for idx, input in enumerate(inputs)
        ],
    )


def auto_augment_adapter(transform, input, device):
    adapted_input = {}
    image_or_video_found = False
    for key, value in input.items():
69
        if isinstance(value, (tv_tensors.BoundingBoxes, tv_tensors.Mask)):
70
71
            # AA transforms don't support bounding boxes or masks
            continue
72
        elif check_type(value, (tv_tensors.Image, tv_tensors.Video, is_pure_tensor, PIL.Image.Image)):
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            if image_or_video_found:
                # AA transforms only support a single image or video
                continue
            image_or_video_found = True
        adapted_input[key] = value
    return adapted_input


def linear_transformation_adapter(transform, input, device):
    flat_inputs = list(input.values())
    c, h, w = query_chw(
        [
            item
            for item, needs_transform in zip(flat_inputs, transforms.Transform()._needs_transform_list(flat_inputs))
            if needs_transform
        ]
    )
    num_elements = c * h * w
    transform.transformation_matrix = torch.randn((num_elements, num_elements), device=device)
    transform.mean_vector = torch.randn((num_elements,), device=device)
    return {key: value for key, value in input.items() if not isinstance(value, PIL.Image.Image)}


def normalize_adapter(transform, input, device):
    adapted_input = {}
    for key, value in input.items():
        if isinstance(value, PIL.Image.Image):
            # normalize doesn't support PIL images
            continue
102
        elif check_type(value, (tv_tensors.Image, tv_tensors.Video, is_pure_tensor)):
103
            # normalize doesn't support integer images
104
            value = F.to_dtype(value, torch.float32, scale=True)
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        adapted_input[key] = value
    return adapted_input


class TestSmoke:
    @pytest.mark.parametrize(
        ("transform", "adapter"),
        [
            (transforms.RandomErasing(p=1.0), None),
            (transforms.AugMix(), auto_augment_adapter),
            (transforms.AutoAugment(), auto_augment_adapter),
            (transforms.RandAugment(), auto_augment_adapter),
            (transforms.TrivialAugmentWide(), auto_augment_adapter),
            (transforms.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.3, hue=0.15), None),
            (transforms.RandomAdjustSharpness(sharpness_factor=0.5, p=1.0), None),
            (transforms.RandomAutocontrast(p=1.0), None),
            (transforms.RandomEqualize(p=1.0), None),
            (transforms.RandomInvert(p=1.0), None),
123
            (transforms.RandomChannelPermutation(), None),
124
125
126
127
128
129
130
131
132
133
            (transforms.RandomPhotometricDistort(p=1.0), None),
            (transforms.RandomPosterize(bits=4, p=1.0), None),
            (transforms.RandomSolarize(threshold=0.5, p=1.0), None),
            (transforms.CenterCrop([16, 16]), None),
            (transforms.ElasticTransform(sigma=1.0), None),
            (transforms.Pad(4), None),
            (transforms.RandomAffine(degrees=30.0), None),
            (transforms.RandomCrop([16, 16], pad_if_needed=True), None),
            (transforms.RandomHorizontalFlip(p=1.0), None),
            (transforms.RandomPerspective(p=1.0), None),
134
135
            (transforms.RandomResize(min_size=10, max_size=20, antialias=True), None),
            (transforms.RandomResizedCrop([16, 16], antialias=True), None),
136
            (transforms.RandomRotation(degrees=30), None),
137
            (transforms.RandomShortestSize(min_size=10, antialias=True), None),
138
139
            (transforms.RandomVerticalFlip(p=1.0), None),
            (transforms.Resize([16, 16], antialias=True), None),
140
            (transforms.ScaleJitter((16, 16), scale_range=(0.8, 1.2), antialias=True), None),
141
            (transforms.ClampBoundingBoxes(), None),
142
            (transforms.ConvertBoundingBoxFormat(tv_tensors.BoundingBoxFormat.CXCYWH), None),
143
            (transforms.ConvertImageDtype(), None),
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
            (transforms.GaussianBlur(kernel_size=3), None),
            (
                transforms.LinearTransformation(
                    # These are just dummy values that will be filled by the adapter. We can't define them upfront,
                    # because for we neither know the spatial size nor the device at this point
                    transformation_matrix=torch.empty((1, 1)),
                    mean_vector=torch.empty((1,)),
                ),
                linear_transformation_adapter,
            ),
            (transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), normalize_adapter),
            (transforms.ToDtype(torch.float64), None),
            (transforms.UniformTemporalSubsample(num_samples=2), None),
        ],
        ids=lambda transform: type(transform).__name__,
    )
    @pytest.mark.parametrize("container_type", [dict, list, tuple])
    @pytest.mark.parametrize(
        "image_or_video",
        [
            make_image(),
            make_video(),
            next(make_pil_images(color_spaces=["RGB"])),
            next(make_vanilla_tensor_images()),
        ],
    )
170
    @pytest.mark.parametrize("de_serialize", [lambda t: t, lambda t: pickle.loads(pickle.dumps(t))])
171
    @pytest.mark.parametrize("device", cpu_and_cuda())
172
173
174
    def test_common(self, transform, adapter, container_type, image_or_video, de_serialize, device):
        transform = de_serialize(transform)

Philip Meier's avatar
Philip Meier committed
175
        canvas_size = F.get_size(image_or_video)
176
177
        input = dict(
            image_or_video=image_or_video,
178
179
            image_tv_tensor=make_image(size=canvas_size),
            video_tv_tensor=make_video(size=canvas_size),
Philip Meier's avatar
Philip Meier committed
180
            image_pil=next(make_pil_images(sizes=[canvas_size], color_spaces=["RGB"])),
181
            bounding_boxes_xyxy=make_bounding_boxes(
182
                format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size, batch_dims=(3,)
183
            ),
184
            bounding_boxes_xywh=make_bounding_boxes(
185
                format=tv_tensors.BoundingBoxFormat.XYWH, canvas_size=canvas_size, batch_dims=(4,)
186
            ),
187
            bounding_boxes_cxcywh=make_bounding_boxes(
188
                format=tv_tensors.BoundingBoxFormat.CXCYWH, canvas_size=canvas_size, batch_dims=(5,)
189
            ),
190
            bounding_boxes_degenerate_xyxy=tv_tensors.BoundingBoxes(
191
192
193
194
195
196
197
198
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [2, 0, 1, 1],  # x1 > x2, y1 < y2
                    [0, 2, 1, 1],  # x1 < x2, y1 > y2
                    [2, 2, 1, 1],  # x1 > x2, y1 > y2
                ],
199
                format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
200
                canvas_size=canvas_size,
201
            ),
202
            bounding_boxes_degenerate_xywh=tv_tensors.BoundingBoxes(
203
204
205
206
207
208
209
210
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
211
                format=tv_tensors.BoundingBoxFormat.XYWH,
Philip Meier's avatar
Philip Meier committed
212
                canvas_size=canvas_size,
213
            ),
214
            bounding_boxes_degenerate_cxcywh=tv_tensors.BoundingBoxes(
215
216
217
218
219
220
221
222
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
223
                format=tv_tensors.BoundingBoxFormat.CXCYWH,
Philip Meier's avatar
Philip Meier committed
224
                canvas_size=canvas_size,
225
            ),
Philip Meier's avatar
Philip Meier committed
226
227
            detection_mask=make_detection_mask(size=canvas_size),
            segmentation_mask=make_segmentation_mask(size=canvas_size),
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
            int=0,
            float=0.0,
            bool=True,
            none=None,
            str="str",
            path=pathlib.Path.cwd(),
            object=object(),
            tensor=torch.empty(5),
            array=np.empty(5),
        )
        if adapter is not None:
            input = adapter(transform, input, device)

        if container_type in {tuple, list}:
            input = container_type(input.values())

        input_flat, input_spec = tree_flatten(input)
        input_flat = [item.to(device) if isinstance(item, torch.Tensor) else item for item in input_flat]
        input = tree_unflatten(input_flat, input_spec)

        torch.manual_seed(0)
        output = transform(input)
        output_flat, output_spec = tree_flatten(output)

        assert output_spec == input_spec

        for output_item, input_item, should_be_transformed in zip(
            output_flat, input_flat, transforms.Transform()._needs_transform_list(input_flat)
        ):
            if should_be_transformed:
                assert type(output_item) is type(input_item)
            else:
                assert output_item is input_item

262
            if isinstance(input_item, tv_tensors.BoundingBoxes) and not isinstance(
263
264
265
266
267
268
269
                transform, transforms.ConvertBoundingBoxFormat
            ):
                assert output_item.format == input_item.format

        # Enforce that the transform does not turn a degenerate box marked by RandomIoUCrop (or any other future
        # transform that does this), back into a valid one.
        # TODO: we should test that against all degenerate boxes above
270
        for format in list(tv_tensors.BoundingBoxFormat):
271
            sample = dict(
272
                boxes=tv_tensors.BoundingBoxes([[0, 0, 0, 0]], format=format, canvas_size=(224, 244)),
273
274
                labels=torch.tensor([3]),
            )
275
            assert transforms.SanitizeBoundingBoxes()(sample)["boxes"].shape == (0, 4)
276
277
278
279
280
281
282
283
284
285
286
287
288

    @parametrize(
        [
            (
                transform,
                itertools.chain.from_iterable(
                    fn(
                        color_spaces=[
                            "GRAY",
                            "RGB",
                        ],
                        dtypes=[torch.uint8],
                        extra_dims=[(), (4,)],
289
                        **(dict(num_frames=[3]) if fn is make_videos else dict()),
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
                    )
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_pil_images,
                        make_videos,
                    ]
                ),
            )
            for transform in (
                transforms.RandAugment(),
                transforms.TrivialAugmentWide(),
                transforms.AutoAugment(),
                transforms.AugMix(),
            )
        ]
    )
    def test_auto_augment(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0]),
                itertools.chain.from_iterable(
                    fn(color_spaces=["RGB"], dtypes=[torch.float32])
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_videos,
                    ]
                ),
            ),
        ]
    )
    def test_normalize(self, transform, input):
        transform(input)


@pytest.mark.parametrize(
    "flat_inputs",
    itertools.permutations(
        [
            next(make_vanilla_tensor_images()),
            next(make_vanilla_tensor_images()),
            next(make_pil_images()),
            make_image(),
            next(make_videos()),
        ],
        3,
    ),
)
342
343
def test_pure_tensor_heuristic(flat_inputs):
    def split_on_pure_tensor(to_split):
344
        # This takes a sequence that is structurally aligned with `flat_inputs` and splits its items into three parts:
345
346
        # 1. The first pure tensor. If none is present, this will be `None`
        # 2. A list of the remaining pure tensors
347
        # 3. A list of all other items
348
        pure_tensors = []
349
350
351
352
        others = []
        # Splitting always happens on the original `flat_inputs` to avoid any erroneous type changes by the transform to
        # affect the splitting.
        for item, inpt in zip(to_split, flat_inputs):
353
354
            (pure_tensors if is_pure_tensor(inpt) else others).append(item)
        return pure_tensors[0] if pure_tensors else None, pure_tensors[1:], others
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

    class CopyCloneTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt.clone() if isinstance(inpt, torch.Tensor) else inpt.copy()

        @staticmethod
        def was_applied(output, inpt):
            identity = output is inpt
            if identity:
                return False

            # Make sure nothing fishy is going on
            assert_equal(output, inpt)
            return True

370
    first_pure_tensor_input, other_pure_tensor_inputs, other_inputs = split_on_pure_tensor(flat_inputs)
371
372
373
374

    transform = CopyCloneTransform()
    transformed_sample = transform(flat_inputs)

375
    first_pure_tensor_output, other_pure_tensor_outputs, other_outputs = split_on_pure_tensor(transformed_sample)
376

377
    if first_pure_tensor_input is not None:
378
        if other_inputs:
379
            assert not transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
380
        else:
381
            assert transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
382

383
    for output, inpt in zip(other_pure_tensor_outputs, other_pure_tensor_inputs):
384
385
386
387
388
389
390
391
392
        assert not transform.was_applied(output, inpt)

    for input, output in zip(other_inputs, other_outputs):
        assert transform.was_applied(output, input)


class TestElasticTransform:
    def test_assertions(self):

393
        with pytest.raises(TypeError, match="alpha should be a number or a sequence of numbers"):
394
395
            transforms.ElasticTransform({})

396
        with pytest.raises(ValueError, match="alpha is a sequence its length should be 1 or 2"):
397
398
            transforms.ElasticTransform([1.0, 2.0, 3.0])

399
        with pytest.raises(TypeError, match="sigma should be a number or a sequence of numbers"):
400
401
            transforms.ElasticTransform(1.0, {})

402
        with pytest.raises(ValueError, match="sigma is a sequence its length should be 1 or 2"):
403
404
405
406
407
            transforms.ElasticTransform(1.0, [1.0, 2.0, 3.0])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.ElasticTransform(1.0, 2.0, fill="abc")

Philip Meier's avatar
Philip Meier committed
408
    def test__get_params(self):
409
410
411
        alpha = 2.0
        sigma = 3.0
        transform = transforms.ElasticTransform(alpha, sigma)
Philip Meier's avatar
Philip Meier committed
412
413
414

        h, w = size = (24, 32)
        image = make_image(size)
415
416
417
418
419
420
421
422
423
424
425
426

        params = transform._get_params([image])

        displacement = params["displacement"]
        assert displacement.shape == (1, h, w, 2)
        assert (-alpha / w <= displacement[0, ..., 0]).all() and (displacement[0, ..., 0] <= alpha / w).all()
        assert (-alpha / h <= displacement[0, ..., 1]).all() and (displacement[0, ..., 1] <= alpha / h).all()


class TestTransform:
    @pytest.mark.parametrize(
        "inpt_type",
427
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    )
    def test_check_transformed_types(self, inpt_type, mocker):
        # This test ensures that we correctly handle which types to transform and which to bypass
        t = transforms.Transform()
        inpt = mocker.MagicMock(spec=inpt_type)

        if inpt_type in (np.ndarray, str, int):
            output = t(inpt)
            assert output is inpt
        else:
            with pytest.raises(NotImplementedError):
                t(inpt)


442
class TestToImage:
443
444
    @pytest.mark.parametrize(
        "inpt_type",
445
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
446
447
448
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch(
449
            "torchvision.transforms.v2.functional.to_image",
450
451
452
453
            return_value=torch.rand(1, 3, 8, 8),
        )

        inpt = mocker.MagicMock(spec=inpt_type)
454
        transform = transforms.ToImage()
455
        transform(inpt)
456
        if inpt_type in (tv_tensors.BoundingBoxes, tv_tensors.Image, str, int):
457
458
459
460
461
462
463
464
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestToPILImage:
    @pytest.mark.parametrize(
        "inpt_type",
465
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
466
467
    )
    def test__transform(self, inpt_type, mocker):
468
        fn = mocker.patch("torchvision.transforms.v2.functional.to_pil_image")
469
470
471
472

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToPILImage()
        transform(inpt)
473
        if inpt_type in (PIL.Image.Image, tv_tensors.BoundingBoxes, str, int):
474
475
476
477
478
479
480
481
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt, mode=transform.mode)


class TestToTensor:
    @pytest.mark.parametrize(
        "inpt_type",
482
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
483
484
485
486
487
488
489
490
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.functional.to_tensor")

        inpt = mocker.MagicMock(spec=inpt_type)
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            transform = transforms.ToTensor()
        transform(inpt)
491
        if inpt_type in (tv_tensors.Image, torch.Tensor, tv_tensors.BoundingBoxes, str, int):
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestContainers:
    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    def test_assertions(self, transform_cls):
        with pytest.raises(TypeError, match="Argument transforms should be a sequence of callables"):
            transform_cls(transforms.RandomCrop(28))

    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    @pytest.mark.parametrize(
        "trfms",
        [
            [transforms.Pad(2), transforms.RandomCrop(28)],
            [lambda x: 2.0 * x, transforms.Pad(2), transforms.RandomCrop(28)],
            [transforms.Pad(2), lambda x: 2.0 * x, transforms.RandomCrop(28)],
        ],
    )
    def test_ctor(self, transform_cls, trfms):
        c = transform_cls(trfms)
        inpt = torch.rand(1, 3, 32, 32)
        output = c(inpt)
        assert isinstance(output, torch.Tensor)
        assert output.ndim == 4


class TestRandomChoice:
    def test_assertions(self):
522
        with pytest.raises(ValueError, match="Length of p doesn't match the number of transforms"):
523
            transforms.RandomChoice([transforms.Pad(2), transforms.RandomCrop(28)], p=[1])
524
525
526


class TestRandomIoUCrop:
527
    @pytest.mark.parametrize("device", cpu_and_cuda())
528
    @pytest.mark.parametrize("options", [[0.5, 0.9], [2.0]])
Philip Meier's avatar
Philip Meier committed
529
530
531
    def test__get_params(self, device, options):
        orig_h, orig_w = size = (24, 32)
        image = make_image(size)
532
        bboxes = tv_tensors.BoundingBoxes(
533
534
            torch.tensor([[1, 1, 10, 10], [20, 20, 23, 23], [1, 20, 10, 23], [20, 1, 23, 10]]),
            format="XYXY",
Philip Meier's avatar
Philip Meier committed
535
            canvas_size=size,
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
            device=device,
        )
        sample = [image, bboxes]

        transform = transforms.RandomIoUCrop(sampler_options=options)

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params(sample)

            if options == [2.0]:
                assert len(params) == 0
                return

            assert len(params["is_within_crop_area"]) > 0
            assert params["is_within_crop_area"].dtype == torch.bool

            assert int(transform.min_scale * orig_h) <= params["height"] <= int(transform.max_scale * orig_h)
            assert int(transform.min_scale * orig_w) <= params["width"] <= int(transform.max_scale * orig_w)

            left, top = params["left"], params["top"]
            new_h, new_w = params["height"], params["width"]
            ious = box_iou(
                bboxes,
                torch.tensor([[left, top, left + new_w, top + new_h]], dtype=bboxes.dtype, device=bboxes.device),
            )
            assert ious.max() >= options[0] or ious.max() >= options[1], f"{ious} vs {options}"

    def test__transform_empty_params(self, mocker):
        transform = transforms.RandomIoUCrop(sampler_options=[2.0])
567
568
        image = tv_tensors.Image(torch.rand(1, 3, 4, 4))
        bboxes = tv_tensors.BoundingBoxes(torch.tensor([[1, 1, 2, 2]]), format="XYXY", canvas_size=(4, 4))
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        label = torch.tensor([1])
        sample = [image, bboxes, label]
        # Let's mock transform._get_params to control the output:
        transform._get_params = mocker.MagicMock(return_value={})
        output = transform(sample)
        torch.testing.assert_close(output, sample)

    def test_forward_assertion(self):
        transform = transforms.RandomIoUCrop()
        with pytest.raises(
            TypeError,
            match="requires input sample to contain tensor or PIL images and bounding boxes",
        ):
            transform(torch.tensor(0))

    def test__transform(self, mocker):
        transform = transforms.RandomIoUCrop()

Philip Meier's avatar
Philip Meier committed
587
588
        size = (32, 24)
        image = make_image(size)
589
        bboxes = make_bounding_boxes(format="XYXY", canvas_size=size, batch_dims=(6,))
Philip Meier's avatar
Philip Meier committed
590
        masks = make_detection_mask(size, num_objects=6)
591
592
593
594
595
596
597
598
599
600
601

        sample = [image, bboxes, masks]

        is_within_crop_area = torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool)

        params = dict(top=1, left=2, height=12, width=12, is_within_crop_area=is_within_crop_area)
        transform._get_params = mocker.MagicMock(return_value=params)
        output = transform(sample)

        # check number of bboxes vs number of labels:
        output_bboxes = output[1]
602
        assert isinstance(output_bboxes, tv_tensors.BoundingBoxes)
603
604
605
        assert (output_bboxes[~is_within_crop_area] == 0).all()

        output_masks = output[2]
606
        assert isinstance(output_masks, tv_tensors.Mask)
607
608
609


class TestScaleJitter:
Philip Meier's avatar
Philip Meier committed
610
611
    def test__get_params(self):
        canvas_size = (24, 32)
612
613
614
615
        target_size = (16, 12)
        scale_range = (0.5, 1.5)

        transform = transforms.ScaleJitter(target_size=target_size, scale_range=scale_range)
Philip Meier's avatar
Philip Meier committed
616
617

        sample = make_image(canvas_size)
618
619
620
621
622
623
624
625
626
627
628
629

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params([sample])

            assert "size" in params
            size = params["size"]

            assert isinstance(size, tuple) and len(size) == 2
            height, width = size

Philip Meier's avatar
Philip Meier committed
630
631
            r_min = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[0]
            r_max = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[1]
632

Philip Meier's avatar
Philip Meier committed
633
634
            assert int(canvas_size[0] * r_min) <= height <= int(canvas_size[0] * r_max)
            assert int(canvas_size[1] * r_min) <= width <= int(canvas_size[1] * r_max)
635
636
637
638


class TestRandomShortestSize:
    @pytest.mark.parametrize("min_size,max_size", [([5, 9], 20), ([5, 9], None)])
Philip Meier's avatar
Philip Meier committed
639
640
    def test__get_params(self, min_size, max_size):
        canvas_size = (3, 10)
641

642
        transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
643

Philip Meier's avatar
Philip Meier committed
644
        sample = make_image(canvas_size)
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
        params = transform._get_params([sample])

        assert "size" in params
        size = params["size"]

        assert isinstance(size, tuple) and len(size) == 2

        longer = max(size)
        shorter = min(size)
        if max_size is not None:
            assert longer <= max_size
            assert shorter <= max_size
        else:
            assert shorter in min_size


class TestLinearTransformation:
    def test_assertions(self):
        with pytest.raises(ValueError, match="transformation_matrix should be square"):
            transforms.LinearTransformation(torch.rand(2, 3), torch.rand(5))

        with pytest.raises(ValueError, match="mean_vector should have the same length"):
            transforms.LinearTransformation(torch.rand(3, 3), torch.rand(5))

    @pytest.mark.parametrize(
        "inpt",
        [
            122 * torch.ones(1, 3, 8, 8),
            122.0 * torch.ones(1, 3, 8, 8),
674
            tv_tensors.Image(122 * torch.ones(1, 3, 8, 8)),
675
676
677
678
679
680
681
682
683
684
            PIL.Image.new("RGB", (8, 8), (122, 122, 122)),
        ],
    )
    def test__transform(self, inpt):

        v = 121 * torch.ones(3 * 8 * 8)
        m = torch.ones(3 * 8 * 8, 3 * 8 * 8)
        transform = transforms.LinearTransformation(m, v)

        if isinstance(inpt, PIL.Image.Image):
685
            with pytest.raises(TypeError, match="does not support PIL images"):
686
687
688
689
690
691
692
693
694
695
696
697
698
                transform(inpt)
        else:
            output = transform(inpt)
            assert isinstance(output, torch.Tensor)
            assert output.unique() == 3 * 8 * 8
            assert output.dtype == inpt.dtype


class TestRandomResize:
    def test__get_params(self):
        min_size = 3
        max_size = 6

699
        transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

        for _ in range(10):
            params = transform._get_params([])

            assert isinstance(params["size"], list) and len(params["size"]) == 1
            size = params["size"][0]

            assert min_size <= size < max_size


class TestUniformTemporalSubsample:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.zeros(10, 3, 8, 8),
            torch.zeros(1, 10, 3, 8, 8),
716
            tv_tensors.Video(torch.zeros(1, 10, 3, 8, 8)),
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
        ],
    )
    def test__transform(self, inpt):
        num_samples = 5
        transform = transforms.UniformTemporalSubsample(num_samples)

        output = transform(inpt)
        assert type(output) is type(inpt)
        assert output.shape[-4] == num_samples
        assert output.dtype == inpt.dtype


# TODO: remove this test in 0.17 when the default of antialias changes to True
def test_antialias_warning():
    pil_img = PIL.Image.new("RGB", size=(10, 10), color=127)
    tensor_img = torch.randint(0, 256, size=(3, 10, 10), dtype=torch.uint8)
    tensor_video = torch.randint(0, 256, size=(2, 3, 10, 10), dtype=torch.uint8)

    match = "The default value of the antialias parameter"
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResizedCrop((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.ScaleJitter((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomShortestSize((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResize(10, 20)(tensor_img)

    with pytest.warns(UserWarning, match=match):
746
        F.resized_crop(tv_tensors.Image(tensor_img), 0, 0, 10, 10, (20, 20))
747
748

    with pytest.warns(UserWarning, match=match):
749
        F.resize(tv_tensors.Video(tensor_video), (20, 20))
750
    with pytest.warns(UserWarning, match=match):
751
        F.resized_crop(tv_tensors.Video(tensor_video), 0, 0, 10, 10, (20, 20))
752
753
754
755
756
757
758
759
760
761
762
763
764

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        transforms.RandomResizedCrop((20, 20))(pil_img)
        transforms.ScaleJitter((20, 20))(pil_img)
        transforms.RandomShortestSize((20, 20))(pil_img)
        transforms.RandomResize(10, 20)(pil_img)

        transforms.RandomResizedCrop((20, 20), antialias=True)(tensor_img)
        transforms.ScaleJitter((20, 20), antialias=True)(tensor_img)
        transforms.RandomShortestSize((20, 20), antialias=True)(tensor_img)
        transforms.RandomResize(10, 20, antialias=True)(tensor_img)

765
766
        F.resized_crop(tv_tensors.Image(tensor_img), 0, 0, 10, 10, (20, 20), antialias=True)
        F.resized_crop(tv_tensors.Video(tensor_video), 0, 0, 10, 10, (20, 20), antialias=True)
767
768


769
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
770
771
@pytest.mark.parametrize("label_type", (torch.Tensor, int))
@pytest.mark.parametrize("dataset_return_type", (dict, tuple))
772
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
773
774
def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):

775
    image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, 250, 250), dtype=torch.uint8))
776
777
778
779
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
780
        assert is_pure_tensor(image)
781
782
783
784
785
786
787
788
789
790
791

    label = 1 if label_type is int else torch.tensor([1])

    if dataset_return_type is dict:
        sample = {
            "image": image,
            "label": label,
        }
    else:
        sample = image, label

792
793
794
795
796
797
    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

798
799
    t = transforms.Compose(
        [
800
            transforms.RandomResizedCrop((224, 224), antialias=True),
801
802
803
804
805
            transforms.RandomHorizontalFlip(p=1),
            transforms.RandAugment(),
            transforms.TrivialAugmentWide(),
            transforms.AugMix(),
            transforms.AutoAugment(),
806
            to_tensor,
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
            # TODO: ConvertImageDtype is a pass-through on PIL images, is that
            # intended?  This results in a failure if we convert to tensor after
            # it, because the image would still be uint8 which make Normalize
            # fail.
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]),
            transforms.RandomErasing(p=1),
        ]
    )

    out = t(sample)

    assert type(out) == type(sample)

    if dataset_return_type is tuple:
        out_image, out_label = out
    else:
        assert out.keys() == sample.keys()
        out_image, out_label = out.values()

    assert out_image.shape[-2:] == (224, 224)
    assert out_label == label


831
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
832
@pytest.mark.parametrize("data_augmentation", ("hflip", "lsj", "multiscale", "ssd", "ssdlite"))
833
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
834
835
836
@pytest.mark.parametrize("sanitize", (True, False))
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
    torch.manual_seed(0)
837
838
839
840
841
842
843

    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

844
845
846
    if data_augmentation == "hflip":
        t = [
            transforms.RandomHorizontalFlip(p=1),
847
            to_tensor,
848
849
850
851
852
853
854
855
856
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "lsj":
        t = [
            transforms.ScaleJitter(target_size=(1024, 1024), antialias=True),
            # Note: replaced FixedSizeCrop with RandomCrop, becuase we're
            # leaving FixedSizeCrop in prototype for now, and it expects Label
            # classes which we won't release yet.
            # transforms.FixedSizeCrop(
857
            #     size=(1024, 1024), fill=defaultdict(lambda: (123.0, 117.0, 104.0), {tv_tensors.Mask: 0})
858
859
860
            # ),
            transforms.RandomCrop((1024, 1024), pad_if_needed=True),
            transforms.RandomHorizontalFlip(p=1),
861
            to_tensor,
862
863
864
865
866
867
868
869
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "multiscale":
        t = [
            transforms.RandomShortestSize(
                min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
            ),
            transforms.RandomHorizontalFlip(p=1),
870
            to_tensor,
871
872
873
874
875
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssd":
        t = [
            transforms.RandomPhotometricDistort(p=1),
876
            transforms.RandomZoomOut(fill={"others": (123.0, 117.0, 104.0), tv_tensors.Mask: 0}, p=1),
877
878
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
879
            to_tensor,
880
881
882
883
884
885
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssdlite":
        t = [
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
886
            to_tensor,
887
888
889
            transforms.ConvertImageDtype(torch.float),
        ]
    if sanitize:
890
        t += [transforms.SanitizeBoundingBoxes()]
891
892
893
894
895
    t = transforms.Compose(t)

    num_boxes = 5
    H = W = 250

896
    image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8))
897
898
899
900
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
901
        assert is_pure_tensor(image)
902
903
904
905
906
907

    label = torch.randint(0, 10, size=(num_boxes,))

    boxes = torch.randint(0, min(H, W) // 2, size=(num_boxes, 4))
    boxes[:, 2:] += boxes[:, :2]
    boxes = boxes.clamp(min=0, max=min(H, W))
908
    boxes = tv_tensors.BoundingBoxes(boxes, format="XYXY", canvas_size=(H, W))
909

910
    masks = tv_tensors.Mask(torch.randint(0, 2, size=(num_boxes, H, W), dtype=torch.uint8))
911
912
913
914
915
916
917
918
919
920

    sample = {
        "image": image,
        "label": label,
        "boxes": boxes,
        "masks": masks,
    }

    out = t(sample)

921
    if isinstance(to_tensor, transforms.ToTensor) and image_type is not tv_tensors.Image:
922
        assert is_pure_tensor(out["image"])
923
    else:
924
        assert isinstance(out["image"], tv_tensors.Image)
925
926
927
928
929
930
    assert isinstance(out["label"], type(sample["label"]))

    num_boxes_expected = {
        # ssd and ssdlite contain RandomIoUCrop which may "remove" some bbox. It
        # doesn't remove them strictly speaking, it just marks some boxes as
        # degenerate and those boxes will be later removed by
931
        # SanitizeBoundingBoxes(), which we add to the pipelines if the sanitize
932
933
934
        # param is True.
        # Note that the values below are probably specific to the random seed
        # set above (which is fine).
935
        (True, "ssd"): 5,
936
937
938
939
940
941
942
        (True, "ssdlite"): 4,
    }.get((sanitize, data_augmentation), num_boxes)

    assert out["boxes"].shape[0] == out["masks"].shape[0] == out["label"].shape[0] == num_boxes_expected


@pytest.mark.parametrize("min_size", (1, 10))
943
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
944
945
946
947
948
949
950
951
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_sanitize_bounding_boxes(min_size, labels_getter, sample_type):

    if sample_type is tuple and not isinstance(labels_getter, str):
        # The "lambda inputs: inputs["labels"]" labels_getter used in this test
        # doesn't work if the input is a tuple.
        return

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    H, W = 256, 128

    boxes_and_validity = [
        ([0, 1, 10, 1], False),  # Y1 == Y2
        ([0, 1, 0, 20], False),  # X1 == X2
        ([0, 0, min_size - 1, 10], False),  # H < min_size
        ([0, 0, 10, min_size - 1], False),  # W < min_size
        ([0, 0, 10, H + 1], False),  # Y2 > H
        ([0, 0, W + 1, 10], False),  # X2 > W
        ([-1, 1, 10, 20], False),  # any < 0
        ([0, 0, -1, 20], False),  # any < 0
        ([0, 0, -10, -1], False),  # any < 0
        ([0, 0, min_size, 10], True),  # H < min_size
        ([0, 0, 10, min_size], True),  # W < min_size
        ([0, 0, W, H], True),  # TODO: Is that actually OK?? Should it be -1?
        ([1, 1, 30, 20], True),
        ([0, 0, 10, 10], True),
        ([1, 1, 30, 20], True),
    ]

    random.shuffle(boxes_and_validity)  # For test robustness: mix order of wrong and correct cases
    boxes, is_valid_mask = zip(*boxes_and_validity)
    valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]

    boxes = torch.tensor(boxes)
    labels = torch.arange(boxes.shape[0])

979
    boxes = tv_tensors.BoundingBoxes(
980
        boxes,
981
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
982
        canvas_size=(H, W),
983
984
    )

985
    masks = tv_tensors.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
986
987
    whatever = torch.rand(10)
    input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
988
    sample = {
989
        "image": input_img,
990
991
        "labels": labels,
        "boxes": boxes,
992
        "whatever": whatever,
993
994
995
996
        "None": None,
        "masks": masks,
    }

997
998
999
1000
    if sample_type is tuple:
        img = sample.pop("image")
        sample = (img, sample)

1001
    out = transforms.SanitizeBoundingBoxes(min_size=min_size, labels_getter=labels_getter)(sample)
1002

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    if sample_type is tuple:
        out_image = out[0]
        out_labels = out[1]["labels"]
        out_boxes = out[1]["boxes"]
        out_masks = out[1]["masks"]
        out_whatever = out[1]["whatever"]
    else:
        out_image = out["image"]
        out_labels = out["labels"]
        out_boxes = out["boxes"]
        out_masks = out["masks"]
        out_whatever = out["whatever"]

    assert out_image is input_img
    assert out_whatever is whatever
1018

1019
1020
    assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
    assert isinstance(out_masks, tv_tensors.Mask)
1021

1022
    if labels_getter is None or (callable(labels_getter) and labels_getter({"labels": "blah"}) is None):
1023
        assert out_labels is labels
1024
    else:
1025
1026
        assert isinstance(out_labels, torch.Tensor)
        assert out_boxes.shape[0] == out_labels.shape[0] == out_masks.shape[0]
1027
        # This works because we conveniently set labels to arange(num_boxes)
1028
        assert out_labels.tolist() == valid_indices
1029
1030


1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
def test_sanitize_bounding_boxes_no_label():
    # Non-regression test for https://github.com/pytorch/vision/issues/7878

    img = make_image()
    boxes = make_bounding_boxes()

    with pytest.raises(ValueError, match="or a two-tuple whose second item is a dict"):
        transforms.SanitizeBoundingBoxes()(img, boxes)

    out_img, out_boxes = transforms.SanitizeBoundingBoxes(labels_getter=None)(img, boxes)
1041
1042
    assert isinstance(out_img, tv_tensors.Image)
    assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
1043
1044


1045
1046
def test_sanitize_bounding_boxes_errors():

1047
    good_bbox = tv_tensors.BoundingBoxes(
1048
        [[0, 0, 10, 10]],
1049
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1050
        canvas_size=(20, 20),
1051
1052
1053
    )

    with pytest.raises(ValueError, match="min_size must be >= 1"):
1054
        transforms.SanitizeBoundingBoxes(min_size=0)
1055
    with pytest.raises(ValueError, match="labels_getter should either be 'default'"):
1056
        transforms.SanitizeBoundingBoxes(labels_getter=12)
1057
1058
1059

    with pytest.raises(ValueError, match="Could not infer where the labels are"):
        bad_labels_key = {"bbox": good_bbox, "BAD_KEY": torch.arange(good_bbox.shape[0])}
1060
        transforms.SanitizeBoundingBoxes()(bad_labels_key)
1061
1062
1063

    with pytest.raises(ValueError, match="must be a tensor"):
        not_a_tensor = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0]).tolist()}
1064
        transforms.SanitizeBoundingBoxes()(not_a_tensor)
1065
1066
1067

    with pytest.raises(ValueError, match="Number of boxes"):
        different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
1068
        transforms.SanitizeBoundingBoxes()(different_sizes)
1069

1070

Philip Meier's avatar
Philip Meier committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
class TestLambda:
    inputs = pytest.mark.parametrize("input", [object(), torch.empty(()), np.empty(()), "string", 1, 0.0])

    @inputs
    def test_default(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        transform = transforms.Lambda(was_applied_fn)

        transform(input)

        assert was_applied

    @inputs
    def test_with_types(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        types = (torch.Tensor, np.ndarray)
        transform = transforms.Lambda(was_applied_fn, *types)

        transform(input)

        assert was_applied is isinstance(input, types)