"discover/types.go" did not exist on "69be940bf6d2816f61c79facfa336183bc882720"
_misc.py 16.7 KB
Newer Older
1
import warnings
2
from typing import Any, Callable, cast, Dict, List, Optional, Sequence, Type, Union
3
4
5
6
7
8

import PIL.Image

import torch
from torch.utils._pytree import tree_flatten, tree_unflatten

9
from torchvision import transforms as _transforms, tv_tensors
10
11
from torchvision.transforms.v2 import functional as F, Transform

12
from ._utils import _parse_labels_getter, _setup_number_or_seq, _setup_size, get_bounding_boxes, has_any, is_pure_tensor
13
14


Nicolas Hug's avatar
Nicolas Hug committed
15
# TODO: do we want/need to expose this?
16
17
18
19
20
21
class Identity(Transform):
    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return inpt


class Lambda(Transform):
22
    """Apply a user-defined function as a transform.
23
24
25
26
27
28
29

    This transform does not support torchscript.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

Philip Meier's avatar
Philip Meier committed
30
31
    _transformed_types = (object,)

32
33
34
    def __init__(self, lambd: Callable[[Any], Any], *types: Type):
        super().__init__()
        self.lambd = lambd
Philip Meier's avatar
Philip Meier committed
35
        self.types = types or self._transformed_types
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        if isinstance(inpt, self.types):
            return self.lambd(inpt)
        else:
            return inpt

    def extra_repr(self) -> str:
        extras = []
        name = getattr(self.lambd, "__name__", None)
        if name:
            extras.append(name)
        extras.append(f"types={[type.__name__ for type in self.types]}")
        return ", ".join(extras)


class LinearTransformation(Transform):
53
    """Transform a tensor image or video with a square transformation matrix and a mean_vector computed offline.
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

    This transform does not support PIL Image.
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
    original shape.

    Applications:
        whitening transformation: Suppose X is a column vector zero-centered data.
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
        mean_vector (Tensor): tensor [D], D = C x H x W
    """

71
72
    _v1_transform_cls = _transforms.LinearTransformation

73
    _transformed_types = (is_pure_tensor, tv_tensors.Image, tv_tensors.Video)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

    def __init__(self, transformation_matrix: torch.Tensor, mean_vector: torch.Tensor):
        super().__init__()
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError(
                "transformation_matrix should be square. Got "
                f"{tuple(transformation_matrix.size())} rectangular matrix."
            )

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError(
                f"mean_vector should have the same length {mean_vector.size(0)}"
                f" as any one of the dimensions of the transformation_matrix [{tuple(transformation_matrix.size())}]"
            )

        if transformation_matrix.device != mean_vector.device:
            raise ValueError(
                f"Input tensors should be on the same device. Got {transformation_matrix.device} and {mean_vector.device}"
            )

        if transformation_matrix.dtype != mean_vector.dtype:
            raise ValueError(
                f"Input tensors should have the same dtype. Got {transformation_matrix.dtype} and {mean_vector.dtype}"
            )

        self.transformation_matrix = transformation_matrix
        self.mean_vector = mean_vector

    def _check_inputs(self, sample: Any) -> Any:
        if has_any(sample, PIL.Image.Image):
104
            raise TypeError(f"{type(self).__name__}() does not support PIL images.")
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        shape = inpt.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError(
                "Input tensor and transformation matrix have incompatible shape."
                + f"[{shape[-3]} x {shape[-2]} x {shape[-1]}] != "
                + f"{self.transformation_matrix.shape[0]}"
            )

        if inpt.device.type != self.mean_vector.device.type:
            raise ValueError(
                "Input tensor should be on the same device as transformation matrix and mean vector. "
                f"Got {inpt.device} vs {self.mean_vector.device}"
            )

        flat_inpt = inpt.reshape(-1, n) - self.mean_vector

        transformation_matrix = self.transformation_matrix.to(flat_inpt.dtype)
        output = torch.mm(flat_inpt, transformation_matrix)
        output = output.reshape(shape)

128
129
        if isinstance(inpt, (tv_tensors.Image, tv_tensors.Video)):
            output = tv_tensors.wrap(output, like=inpt)
130
131
132
133
        return output


class Normalize(Transform):
134
    """Normalize a tensor image or video with mean and standard deviation.
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

    This transform does not support PIL Image.
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    .. note::
        This transform acts out of place, i.e., it does not mutate the input tensor.

    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
        inplace(bool,optional): Bool to make this operation in-place.

    """

152
153
154
155
156
157
158
159
160
161
162
163
    _v1_transform_cls = _transforms.Normalize

    def __init__(self, mean: Sequence[float], std: Sequence[float], inplace: bool = False):
        super().__init__()
        self.mean = list(mean)
        self.std = list(std)
        self.inplace = inplace

    def _check_inputs(self, sample: Any) -> Any:
        if has_any(sample, PIL.Image.Image):
            raise TypeError(f"{type(self).__name__}() does not support PIL images.")

164
    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
165
        return self._call_kernel(F.normalize, inpt, mean=self.mean, std=self.std, inplace=self.inplace)
166
167
168


class GaussianBlur(Transform):
169
    """Blurs image with randomly chosen Gaussian blur.
170

Nicolas Hug's avatar
Nicolas Hug committed
171
    If the input is a Tensor, it is expected
172
173
174
175
176
177
178
179
180
181
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.
    """

182
183
184
185
186
187
188
189
190
191
192
    _v1_transform_cls = _transforms.GaussianBlur

    def __init__(
        self, kernel_size: Union[int, Sequence[int]], sigma: Union[int, float, Sequence[float]] = (0.1, 2.0)
    ) -> None:
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

193
        self.sigma = _setup_number_or_seq(sigma, "sigma")
194

195
196
        if not 0.0 < self.sigma[0] <= self.sigma[1]:
            raise ValueError(f"sigma values should be positive and of the form (min, max). Got {self.sigma}")
197
198
199
200
201
202

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        sigma = torch.empty(1).uniform_(self.sigma[0], self.sigma[1]).item()
        return dict(sigma=[sigma, sigma])

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
203
        return self._call_kernel(F.gaussian_blur, inpt, self.kernel_size, **params)
204
205
206


class ToDtype(Transform):
207
    """Converts the input to a specific dtype, optionally scaling the values for images or videos.
Nicolas Hug's avatar
Nicolas Hug committed
208

209
210
211
    .. note::
        ``ToDtype(dtype, scale=True)`` is the recommended replacement for ``ConvertImageDtype(dtype)``.

Nicolas Hug's avatar
Nicolas Hug committed
212
    Args:
213
        dtype (``torch.dtype`` or dict of ``TVTensor`` -> ``torch.dtype``): The dtype to convert to.
214
215
            If a ``torch.dtype`` is passed, e.g. ``torch.float32``, only images and videos will be converted
            to that dtype: this is for compatibility with :class:`~torchvision.transforms.v2.ConvertImageDtype`.
216
217
218
            A dict can be passed to specify per-tv_tensor conversions, e.g.
            ``dtype={tv_tensors.Image: torch.float32, tv_tensors.Mask: torch.int64, "others":None}``. The "others"
            key can be used as a catch-all for any other tv_tensor type, and ``None`` means no conversion.
219
220
        scale (bool, optional): Whether to scale the values for images or videos. See :ref:`range_and_dtype`.
            Default: ``False``.
Nicolas Hug's avatar
Nicolas Hug committed
221
222
    """

223
224
    _transformed_types = (torch.Tensor,)

225
226
227
    def __init__(
        self, dtype: Union[torch.dtype, Dict[Union[Type, str], Optional[torch.dtype]]], scale: bool = False
    ) -> None:
228
        super().__init__()
229
230
231
232
233
234
235

        if not isinstance(dtype, (dict, torch.dtype)):
            raise ValueError(f"dtype must be a dict or a torch.dtype, got {type(dtype)} instead")

        if (
            isinstance(dtype, dict)
            and torch.Tensor in dtype
236
            and any(cls in dtype for cls in [tv_tensors.Image, tv_tensors.Video])
237
        ):
238
            warnings.warn(
239
                "Got `dtype` values for `torch.Tensor` and either `tv_tensors.Image` or `tv_tensors.Video`. "
240
                "Note that a plain `torch.Tensor` will *not* be transformed by this (or any other transformation) "
241
                "in case a `tv_tensors.Image` or `tv_tensors.Video` is present in the input."
242
243
            )
        self.dtype = dtype
244
        self.scale = scale
245
246

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
247
248
249
        if isinstance(self.dtype, torch.dtype):
            # For consistency / BC with ConvertImageDtype, we only care about images or videos when dtype
            # is a simple torch.dtype
250
            if not is_pure_tensor(inpt) and not isinstance(inpt, (tv_tensors.Image, tv_tensors.Video)):
251
252
253
254
255
256
257
258
259
260
261
262
263
                return inpt

            dtype: Optional[torch.dtype] = self.dtype
        elif type(inpt) in self.dtype:
            dtype = self.dtype[type(inpt)]
        elif "others" in self.dtype:
            dtype = self.dtype["others"]
        else:
            raise ValueError(
                f"No dtype was specified for type {type(inpt)}. "
                "If you only need to convert the dtype of images or videos, you can just pass e.g. dtype=torch.float32. "
                "If you're passing a dict as dtype, "
                'you can use "others" as a catch-all key '
264
                'e.g. dtype={tv_tensors.Mask: torch.int64, "others": None} to pass-through the rest of the inputs.'
265
266
            )

267
        supports_scaling = is_pure_tensor(inpt) or isinstance(inpt, (tv_tensors.Image, tv_tensors.Video))
268
        if dtype is None:
269
270
271
272
            if self.scale and supports_scaling:
                warnings.warn(
                    "scale was set to True but no dtype was specified for images or videos: no scaling will be done."
                )
273
            return inpt
274

275
        return self._call_kernel(F.to_dtype, inpt, dtype=dtype, scale=self.scale)
276
277


278
class ConvertImageDtype(Transform):
279
    """[DEPRECATED] Use ``v2.ToDtype(dtype, scale=True)`` instead.
Nicolas Hug's avatar
Nicolas Hug committed
280
281

    Convert input image to the given ``dtype`` and scale the values accordingly.
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

    .. warning::
        Consider using ``ToDtype(dtype, scale=True)`` instead. See :class:`~torchvision.transforms.v2.ToDtype`.

    This function does not support PIL Image.

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    _v1_transform_cls = _transforms.ConvertImageDtype

    def __init__(self, dtype: torch.dtype = torch.float32) -> None:
        super().__init__()
        self.dtype = dtype

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
310
        return self._call_kernel(F.to_dtype, inpt, dtype=self.dtype, scale=True)
311
312


313
class SanitizeBoundingBoxes(Transform):
314
    """Remove degenerate/invalid bounding boxes and their corresponding labels and masks.
Nicolas Hug's avatar
Nicolas Hug committed
315
316
317
318
319

    This transform removes bounding boxes and their associated labels/masks that:

    - are below a given ``min_size``: by default this also removes degenerate boxes that have e.g. X2 <= X1.
    - have any coordinate outside of their corresponding image. You may want to
320
      call :class:`~torchvision.transforms.v2.ClampBoundingBoxes` first to avoid undesired removals.
Nicolas Hug's avatar
Nicolas Hug committed
321
322
323
324
325
326
327
328
329
330
331

    It is recommended to call it at the end of a pipeline, before passing the
    input to the models. It is critical to call this transform if
    :class:`~torchvision.transforms.v2.RandomIoUCrop` was called.
    If you want to be extra careful, you may call it after all transforms that
    may modify bounding boxes but once at the end should be enough in most
    cases.

    Args:
        min_size (float, optional) The size below which bounding boxes are removed. Default is 1.
        labels_getter (callable or str or None, optional): indicates how to identify the labels in the input.
332
            By default, this will try to find a "labels" key in the input (case-insensitive), if
Nicolas Hug's avatar
Nicolas Hug committed
333
334
            the input is a dict or it is a tuple whose second element is a dict.
            This heuristic should work well with a lot of datasets, including the built-in torchvision datasets.
335
336
            It can also be a callable that takes the same input
            as the transform, and returns the labels.
Nicolas Hug's avatar
Nicolas Hug committed
337
    """
338
339
340
341
342
343
344
345
346
347
348
349
350

    def __init__(
        self,
        min_size: float = 1.0,
        labels_getter: Union[Callable[[Any], Optional[torch.Tensor]], str, None] = "default",
    ) -> None:
        super().__init__()

        if min_size < 1:
            raise ValueError(f"min_size must be >= 1, got {min_size}.")
        self.min_size = min_size

        self.labels_getter = labels_getter
351
        self._labels_getter = _parse_labels_getter(labels_getter)
352
353
354
355

    def forward(self, *inputs: Any) -> Any:
        inputs = inputs if len(inputs) > 1 else inputs[0]

356
357
358
359
360
        labels = self._labels_getter(inputs)
        if labels is not None and not isinstance(labels, torch.Tensor):
            raise ValueError(
                f"The labels in the input to forward() must be a tensor or None, got {type(labels)} instead."
            )
361
362

        flat_inputs, spec = tree_flatten(inputs)
363
        boxes = get_bounding_boxes(flat_inputs)
364
365
366
367
368
369
370

        if labels is not None and boxes.shape[0] != labels.shape[0]:
            raise ValueError(
                f"Number of boxes (shape={boxes.shape}) and number of labels (shape={labels.shape}) do not match."
            )

        boxes = cast(
371
            tv_tensors.BoundingBoxes,
Nicolas Hug's avatar
Nicolas Hug committed
372
            F.convert_bounding_box_format(
373
                boxes,
374
                new_format=tv_tensors.BoundingBoxFormat.XYXY,
375
376
377
            ),
        )
        ws, hs = boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1]
378
        valid = (ws >= self.min_size) & (hs >= self.min_size) & (boxes >= 0).all(dim=-1)
379
380
        # TODO: Do we really need to check for out of bounds here? All
        # transforms should be clamping anyway, so this should never happen?
Philip Meier's avatar
Philip Meier committed
381
        image_h, image_w = boxes.canvas_size
382
383
        valid &= (boxes[:, 0] <= image_w) & (boxes[:, 2] <= image_w)
        valid &= (boxes[:, 1] <= image_h) & (boxes[:, 3] <= image_h)
384

385
        params = dict(valid=valid.as_subclass(torch.Tensor), labels=labels)
386
387
        flat_outputs = [
            # Even-though it may look like we're transforming all inputs, we don't:
388
            # _transform() will only care about BoundingBoxeses and the labels
389
390
391
392
393
394
395
            self._transform(inpt, params)
            for inpt in flat_inputs
        ]

        return tree_unflatten(flat_outputs, spec)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
396
        is_label = inpt is not None and inpt is params["labels"]
397
        is_bounding_boxes_or_mask = isinstance(inpt, (tv_tensors.BoundingBoxes, tv_tensors.Mask))
398

399
        if not (is_label or is_bounding_boxes_or_mask):
400
            return inpt
401

402
403
404
405
406
        output = inpt[params["valid"]]

        if is_label:
            return output

407
        return tv_tensors.wrap(output, like=inpt)