_misc.py 17.9 KB
Newer Older
1
import warnings
2
from typing import Any, Callable, cast, Dict, List, Optional, Sequence, Type, Union
3
4
5
6
7
8
9
10
11

import PIL.Image

import torch
from torch.utils._pytree import tree_flatten, tree_unflatten

from torchvision import datapoints, transforms as _transforms
from torchvision.transforms.v2 import functional as F, Transform

12
from ._utils import _parse_labels_getter, _setup_float_or_seq, _setup_size
13
from .utils import has_any, is_simple_tensor, query_bounding_boxes
14
15


Nicolas Hug's avatar
Nicolas Hug committed
16
# TODO: do we want/need to expose this?
17
18
19
20
21
22
class Identity(Transform):
    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return inpt


class Lambda(Transform):
Nicolas Hug's avatar
Nicolas Hug committed
23
    """[BETA] Apply a user-defined function as a transform.
24

25
    .. v2betastatus:: Lambda transform
26
27
28
29
30
31
32

    This transform does not support torchscript.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

Philip Meier's avatar
Philip Meier committed
33
34
    _transformed_types = (object,)

35
36
37
    def __init__(self, lambd: Callable[[Any], Any], *types: Type):
        super().__init__()
        self.lambd = lambd
Philip Meier's avatar
Philip Meier committed
38
        self.types = types or self._transformed_types
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        if isinstance(inpt, self.types):
            return self.lambd(inpt)
        else:
            return inpt

    def extra_repr(self) -> str:
        extras = []
        name = getattr(self.lambd, "__name__", None)
        if name:
            extras.append(name)
        extras.append(f"types={[type.__name__ for type in self.types]}")
        return ", ".join(extras)


class LinearTransformation(Transform):
Nicolas Hug's avatar
Nicolas Hug committed
56
    """[BETA] Transform a tensor image or video with a square transformation matrix and a mean_vector computed offline.
57

58
    .. v2betastatus:: LinearTransformation transform
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    This transform does not support PIL Image.
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
    original shape.

    Applications:
        whitening transformation: Suppose X is a column vector zero-centered data.
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
        mean_vector (Tensor): tensor [D], D = C x H x W
    """

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    _v1_transform_cls = _transforms.LinearTransformation

    _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video)

    def __init__(self, transformation_matrix: torch.Tensor, mean_vector: torch.Tensor):
        super().__init__()
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError(
                "transformation_matrix should be square. Got "
                f"{tuple(transformation_matrix.size())} rectangular matrix."
            )

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError(
                f"mean_vector should have the same length {mean_vector.size(0)}"
                f" as any one of the dimensions of the transformation_matrix [{tuple(transformation_matrix.size())}]"
            )

        if transformation_matrix.device != mean_vector.device:
            raise ValueError(
                f"Input tensors should be on the same device. Got {transformation_matrix.device} and {mean_vector.device}"
            )

        if transformation_matrix.dtype != mean_vector.dtype:
            raise ValueError(
                f"Input tensors should have the same dtype. Got {transformation_matrix.dtype} and {mean_vector.dtype}"
            )

        self.transformation_matrix = transformation_matrix
        self.mean_vector = mean_vector

    def _check_inputs(self, sample: Any) -> Any:
        if has_any(sample, PIL.Image.Image):
            raise TypeError("LinearTransformation does not work on PIL Images")

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        shape = inpt.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError(
                "Input tensor and transformation matrix have incompatible shape."
                + f"[{shape[-3]} x {shape[-2]} x {shape[-1]}] != "
                + f"{self.transformation_matrix.shape[0]}"
            )

        if inpt.device.type != self.mean_vector.device.type:
            raise ValueError(
                "Input tensor should be on the same device as transformation matrix and mean vector. "
                f"Got {inpt.device} vs {self.mean_vector.device}"
            )

        flat_inpt = inpt.reshape(-1, n) - self.mean_vector

        transformation_matrix = self.transformation_matrix.to(flat_inpt.dtype)
        output = torch.mm(flat_inpt, transformation_matrix)
        output = output.reshape(shape)

        if isinstance(inpt, (datapoints.Image, datapoints.Video)):
            output = type(inpt).wrap_like(inpt, output)  # type: ignore[arg-type]
        return output


class Normalize(Transform):
Nicolas Hug's avatar
Nicolas Hug committed
139
    """[BETA] Normalize a tensor image or video with mean and standard deviation.
140

141
    .. v2betastatus:: Normalize transform
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    This transform does not support PIL Image.
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    .. note::
        This transform acts out of place, i.e., it does not mutate the input tensor.

    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
        inplace(bool,optional): Bool to make this operation in-place.

    """

159
160
161
162
163
164
165
166
167
168
169
170
171
172
    _v1_transform_cls = _transforms.Normalize
    _transformed_types = (datapoints.Image, is_simple_tensor, datapoints.Video)

    def __init__(self, mean: Sequence[float], std: Sequence[float], inplace: bool = False):
        super().__init__()
        self.mean = list(mean)
        self.std = list(std)
        self.inplace = inplace

    def _check_inputs(self, sample: Any) -> Any:
        if has_any(sample, PIL.Image.Image):
            raise TypeError(f"{type(self).__name__}() does not support PIL images.")

    def _transform(
Philip Meier's avatar
Philip Meier committed
173
        self, inpt: Union[datapoints._TensorImageType, datapoints._TensorVideoType], params: Dict[str, Any]
174
175
176
177
178
    ) -> Any:
        return F.normalize(inpt, mean=self.mean, std=self.std, inplace=self.inplace)


class GaussianBlur(Transform):
179
180
    """[BETA] Blurs image with randomly chosen Gaussian blur.

181
    .. v2betastatus:: GausssianBlur transform
182

Nicolas Hug's avatar
Nicolas Hug committed
183
    If the input is a Tensor, it is expected
184
185
186
187
188
189
190
191
192
193
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.
    """

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    _v1_transform_cls = _transforms.GaussianBlur

    def __init__(
        self, kernel_size: Union[int, Sequence[int]], sigma: Union[int, float, Sequence[float]] = (0.1, 2.0)
    ) -> None:
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, (int, float)):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = float(sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0.0 < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise TypeError("sigma should be a single int or float or a list/tuple with length 2 floats.")

        self.sigma = _setup_float_or_seq(sigma, "sigma", 2)

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        sigma = torch.empty(1).uniform_(self.sigma[0], self.sigma[1]).item()
        return dict(sigma=[sigma, sigma])

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.gaussian_blur(inpt, self.kernel_size, **params)


class ToDtype(Transform):
226
    """[BETA] Converts the input to a specific dtype, optionally scaling the values for images or videos.
Nicolas Hug's avatar
Nicolas Hug committed
227

228
    .. v2betastatus:: ToDtype transform
Nicolas Hug's avatar
Nicolas Hug committed
229

230
231
232
    .. note::
        ``ToDtype(dtype, scale=True)`` is the recommended replacement for ``ConvertImageDtype(dtype)``.

Nicolas Hug's avatar
Nicolas Hug committed
233
    Args:
Nicolas Hug's avatar
Nicolas Hug committed
234
        dtype (``torch.dtype`` or dict of ``Datapoint`` -> ``torch.dtype``): The dtype to convert to.
235
236
            If a ``torch.dtype`` is passed, e.g. ``torch.float32``, only images and videos will be converted
            to that dtype: this is for compatibility with :class:`~torchvision.transforms.v2.ConvertImageDtype`.
Nicolas Hug's avatar
Nicolas Hug committed
237
            A dict can be passed to specify per-datapoint conversions, e.g.
238
239
240
            ``dtype={datapoints.Image: torch.float32, datapoints.Mask: torch.int64, "others":None}``. The "others"
            key can be used as a catch-all for any other datapoint type, and ``None`` means no conversion.
        scale (bool, optional): Whether to scale the values for images or videos. Default: ``False``.
Nicolas Hug's avatar
Nicolas Hug committed
241
242
    """

243
244
    _transformed_types = (torch.Tensor,)

245
246
247
    def __init__(
        self, dtype: Union[torch.dtype, Dict[Union[Type, str], Optional[torch.dtype]]], scale: bool = False
    ) -> None:
248
        super().__init__()
249
250
251
252
253
254
255
256
257

        if not isinstance(dtype, (dict, torch.dtype)):
            raise ValueError(f"dtype must be a dict or a torch.dtype, got {type(dtype)} instead")

        if (
            isinstance(dtype, dict)
            and torch.Tensor in dtype
            and any(cls in dtype for cls in [datapoints.Image, datapoints.Video])
        ):
258
259
260
261
262
263
            warnings.warn(
                "Got `dtype` values for `torch.Tensor` and either `datapoints.Image` or `datapoints.Video`. "
                "Note that a plain `torch.Tensor` will *not* be transformed by this (or any other transformation) "
                "in case a `datapoints.Image` or `datapoints.Video` is present in the input."
            )
        self.dtype = dtype
264
        self.scale = scale
265
266

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        if isinstance(self.dtype, torch.dtype):
            # For consistency / BC with ConvertImageDtype, we only care about images or videos when dtype
            # is a simple torch.dtype
            if not is_simple_tensor(inpt) and not isinstance(inpt, (datapoints.Image, datapoints.Video)):
                return inpt

            dtype: Optional[torch.dtype] = self.dtype
        elif type(inpt) in self.dtype:
            dtype = self.dtype[type(inpt)]
        elif "others" in self.dtype:
            dtype = self.dtype["others"]
        else:
            raise ValueError(
                f"No dtype was specified for type {type(inpt)}. "
                "If you only need to convert the dtype of images or videos, you can just pass e.g. dtype=torch.float32. "
                "If you're passing a dict as dtype, "
                'you can use "others" as a catch-all key '
                'e.g. dtype={datapoints.Mask: torch.int64, "others": None} to pass-through the rest of the inputs.'
            )

        supports_scaling = is_simple_tensor(inpt) or isinstance(inpt, (datapoints.Image, datapoints.Video))
288
        if dtype is None:
289
290
291
292
            if self.scale and supports_scaling:
                warnings.warn(
                    "scale was set to True but no dtype was specified for images or videos: no scaling will be done."
                )
293
            return inpt
294
295

        return F.to_dtype(inpt, dtype=dtype, scale=self.scale)
296
297


298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
class ConvertImageDtype(Transform):
    """[BETA] Convert input image to the given ``dtype`` and scale the values accordingly.

    .. v2betastatus:: ConvertImageDtype transform

    .. warning::
        Consider using ``ToDtype(dtype, scale=True)`` instead. See :class:`~torchvision.transforms.v2.ToDtype`.

    This function does not support PIL Image.

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    _v1_transform_cls = _transforms.ConvertImageDtype

    _transformed_types = (is_simple_tensor, datapoints.Image)

    def __init__(self, dtype: torch.dtype = torch.float32) -> None:
        super().__init__()
        self.dtype = dtype

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.to_dtype(inpt, dtype=self.dtype, scale=True)


335
class SanitizeBoundingBoxes(Transform):
Nicolas Hug's avatar
Nicolas Hug committed
336
337
    """[BETA] Remove degenerate/invalid bounding boxes and their corresponding labels and masks.

338
    .. v2betastatus:: SanitizeBoundingBoxes transform
Nicolas Hug's avatar
Nicolas Hug committed
339
340
341
342
343

    This transform removes bounding boxes and their associated labels/masks that:

    - are below a given ``min_size``: by default this also removes degenerate boxes that have e.g. X2 <= X1.
    - have any coordinate outside of their corresponding image. You may want to
344
      call :class:`~torchvision.transforms.v2.ClampBoundingBoxes` first to avoid undesired removals.
Nicolas Hug's avatar
Nicolas Hug committed
345
346
347
348
349
350
351
352
353
354
355

    It is recommended to call it at the end of a pipeline, before passing the
    input to the models. It is critical to call this transform if
    :class:`~torchvision.transforms.v2.RandomIoUCrop` was called.
    If you want to be extra careful, you may call it after all transforms that
    may modify bounding boxes but once at the end should be enough in most
    cases.

    Args:
        min_size (float, optional) The size below which bounding boxes are removed. Default is 1.
        labels_getter (callable or str or None, optional): indicates how to identify the labels in the input.
356
            By default, this will try to find a "labels" key in the input (case-insensitive), if
Nicolas Hug's avatar
Nicolas Hug committed
357
358
            the input is a dict or it is a tuple whose second element is a dict.
            This heuristic should work well with a lot of datasets, including the built-in torchvision datasets.
359
360
            It can also be a callable that takes the same input
            as the transform, and returns the labels.
Nicolas Hug's avatar
Nicolas Hug committed
361
    """
362
363
364
365
366
367
368
369
370
371
372
373
374

    def __init__(
        self,
        min_size: float = 1.0,
        labels_getter: Union[Callable[[Any], Optional[torch.Tensor]], str, None] = "default",
    ) -> None:
        super().__init__()

        if min_size < 1:
            raise ValueError(f"min_size must be >= 1, got {min_size}.")
        self.min_size = min_size

        self.labels_getter = labels_getter
375
        self._labels_getter = _parse_labels_getter(labels_getter)
376
377
378
379

    def forward(self, *inputs: Any) -> Any:
        inputs = inputs if len(inputs) > 1 else inputs[0]

380
381
382
383
384
        labels = self._labels_getter(inputs)
        if labels is not None and not isinstance(labels, torch.Tensor):
            raise ValueError(
                f"The labels in the input to forward() must be a tensor or None, got {type(labels)} instead."
            )
385
386

        flat_inputs, spec = tree_flatten(inputs)
387
        # TODO: this enforces one single BoundingBoxes entry.
388
389
        # Assuming this transform needs to be called at the end of *any* pipeline that has bboxes...
        # should we just enforce it for all transforms?? What are the benefits of *not* enforcing this?
390
        boxes = query_bounding_boxes(flat_inputs)
391
392
393
394
395
396
397
398
399
400

        if boxes.ndim != 2:
            raise ValueError(f"boxes must be of shape (num_boxes, 4), got {boxes.shape}")

        if labels is not None and boxes.shape[0] != labels.shape[0]:
            raise ValueError(
                f"Number of boxes (shape={boxes.shape}) and number of labels (shape={labels.shape}) do not match."
            )

        boxes = cast(
401
402
            datapoints.BoundingBoxes,
            F.convert_format_bounding_boxes(
403
404
405
406
407
                boxes,
                new_format=datapoints.BoundingBoxFormat.XYXY,
            ),
        )
        ws, hs = boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1]
408
        valid = (ws >= self.min_size) & (hs >= self.min_size) & (boxes >= 0).all(dim=-1)
409
410
        # TODO: Do we really need to check for out of bounds here? All
        # transforms should be clamping anyway, so this should never happen?
Philip Meier's avatar
Philip Meier committed
411
        image_h, image_w = boxes.canvas_size
412
413
        valid &= (boxes[:, 0] <= image_w) & (boxes[:, 2] <= image_w)
        valid &= (boxes[:, 1] <= image_h) & (boxes[:, 3] <= image_h)
414

415
        params = dict(valid=valid, labels=labels)
416
417
        flat_outputs = [
            # Even-though it may look like we're transforming all inputs, we don't:
418
            # _transform() will only care about BoundingBoxeses and the labels
419
420
421
422
423
424
425
            self._transform(inpt, params)
            for inpt in flat_inputs
        ]

        return tree_unflatten(flat_outputs, spec)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
426
        is_label = inpt is not None and inpt is params["labels"]
427
        is_bounding_boxes_or_mask = isinstance(inpt, (datapoints.BoundingBoxes, datapoints.Mask))
428

429
        if not (is_label or is_bounding_boxes_or_mask):
430
            return inpt
431

432
433
434
435
436
437
        output = inpt[params["valid"]]

        if is_label:
            return output

        return type(inpt).wrap_like(inpt, output)