_misc.py 17 KB
Newer Older
1
2
3
import collections
import warnings
from contextlib import suppress
4
from typing import Any, Callable, cast, Dict, List, Mapping, Optional, Sequence, Type, Union
5
6
7
8
9
10
11
12
13
14
15
16
17

import PIL.Image

import torch
from torch.utils._pytree import tree_flatten, tree_unflatten

from torchvision import datapoints, transforms as _transforms
from torchvision.transforms.v2 import functional as F, Transform

from ._utils import _get_defaultdict, _setup_float_or_seq, _setup_size
from .utils import has_any, is_simple_tensor, query_bounding_box


Nicolas Hug's avatar
Nicolas Hug committed
18
# TODO: do we want/need to expose this?
19
20
21
22
23
24
class Identity(Transform):
    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return inpt


class Lambda(Transform):
Nicolas Hug's avatar
Nicolas Hug committed
25
    """[BETA] Apply a user-defined function as a transform.
26

27
    .. v2betastatus:: Lambda transform
28
29
30
31
32
33
34

    This transform does not support torchscript.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    def __init__(self, lambd: Callable[[Any], Any], *types: Type):
        super().__init__()
        self.lambd = lambd
        self.types = types or (object,)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        if isinstance(inpt, self.types):
            return self.lambd(inpt)
        else:
            return inpt

    def extra_repr(self) -> str:
        extras = []
        name = getattr(self.lambd, "__name__", None)
        if name:
            extras.append(name)
        extras.append(f"types={[type.__name__ for type in self.types]}")
        return ", ".join(extras)


class LinearTransformation(Transform):
Nicolas Hug's avatar
Nicolas Hug committed
56
    """[BETA] Transform a tensor image or video with a square transformation matrix and a mean_vector computed offline.
57

58
    .. v2betastatus:: LinearTransformation transform
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    This transform does not support PIL Image.
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
    original shape.

    Applications:
        whitening transformation: Suppose X is a column vector zero-centered data.
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
        mean_vector (Tensor): tensor [D], D = C x H x W
    """

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    _v1_transform_cls = _transforms.LinearTransformation

    _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video)

    def __init__(self, transformation_matrix: torch.Tensor, mean_vector: torch.Tensor):
        super().__init__()
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError(
                "transformation_matrix should be square. Got "
                f"{tuple(transformation_matrix.size())} rectangular matrix."
            )

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError(
                f"mean_vector should have the same length {mean_vector.size(0)}"
                f" as any one of the dimensions of the transformation_matrix [{tuple(transformation_matrix.size())}]"
            )

        if transformation_matrix.device != mean_vector.device:
            raise ValueError(
                f"Input tensors should be on the same device. Got {transformation_matrix.device} and {mean_vector.device}"
            )

        if transformation_matrix.dtype != mean_vector.dtype:
            raise ValueError(
                f"Input tensors should have the same dtype. Got {transformation_matrix.dtype} and {mean_vector.dtype}"
            )

        self.transformation_matrix = transformation_matrix
        self.mean_vector = mean_vector

    def _check_inputs(self, sample: Any) -> Any:
        if has_any(sample, PIL.Image.Image):
            raise TypeError("LinearTransformation does not work on PIL Images")

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        shape = inpt.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError(
                "Input tensor and transformation matrix have incompatible shape."
                + f"[{shape[-3]} x {shape[-2]} x {shape[-1]}] != "
                + f"{self.transformation_matrix.shape[0]}"
            )

        if inpt.device.type != self.mean_vector.device.type:
            raise ValueError(
                "Input tensor should be on the same device as transformation matrix and mean vector. "
                f"Got {inpt.device} vs {self.mean_vector.device}"
            )

        flat_inpt = inpt.reshape(-1, n) - self.mean_vector

        transformation_matrix = self.transformation_matrix.to(flat_inpt.dtype)
        output = torch.mm(flat_inpt, transformation_matrix)
        output = output.reshape(shape)

        if isinstance(inpt, (datapoints.Image, datapoints.Video)):
            output = type(inpt).wrap_like(inpt, output)  # type: ignore[arg-type]
        return output


class Normalize(Transform):
Nicolas Hug's avatar
Nicolas Hug committed
139
    """[BETA] Normalize a tensor image or video with mean and standard deviation.
140

141
    .. v2betastatus:: Normalize transform
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    This transform does not support PIL Image.
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    .. note::
        This transform acts out of place, i.e., it does not mutate the input tensor.

    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
        inplace(bool,optional): Bool to make this operation in-place.

    """

159
160
161
162
163
164
165
166
167
168
169
170
171
172
    _v1_transform_cls = _transforms.Normalize
    _transformed_types = (datapoints.Image, is_simple_tensor, datapoints.Video)

    def __init__(self, mean: Sequence[float], std: Sequence[float], inplace: bool = False):
        super().__init__()
        self.mean = list(mean)
        self.std = list(std)
        self.inplace = inplace

    def _check_inputs(self, sample: Any) -> Any:
        if has_any(sample, PIL.Image.Image):
            raise TypeError(f"{type(self).__name__}() does not support PIL images.")

    def _transform(
Philip Meier's avatar
Philip Meier committed
173
        self, inpt: Union[datapoints._TensorImageType, datapoints._TensorVideoType], params: Dict[str, Any]
174
175
176
177
178
    ) -> Any:
        return F.normalize(inpt, mean=self.mean, std=self.std, inplace=self.inplace)


class GaussianBlur(Transform):
179
180
    """[BETA] Blurs image with randomly chosen Gaussian blur.

181
    .. v2betastatus:: GausssianBlur transform
182

Nicolas Hug's avatar
Nicolas Hug committed
183
    If the input is a Tensor, it is expected
184
185
186
187
188
189
190
191
192
193
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.
    """

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    _v1_transform_cls = _transforms.GaussianBlur

    def __init__(
        self, kernel_size: Union[int, Sequence[int]], sigma: Union[int, float, Sequence[float]] = (0.1, 2.0)
    ) -> None:
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, (int, float)):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = float(sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0.0 < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise TypeError("sigma should be a single int or float or a list/tuple with length 2 floats.")

        self.sigma = _setup_float_or_seq(sigma, "sigma", 2)

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        sigma = torch.empty(1).uniform_(self.sigma[0], self.sigma[1]).item()
        return dict(sigma=[sigma, sigma])

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.gaussian_blur(inpt, self.kernel_size, **params)


class ToDtype(Transform):
Nicolas Hug's avatar
Nicolas Hug committed
226
    """[BETA] Converts the input to a specific dtype - this does not scale values.
Nicolas Hug's avatar
Nicolas Hug committed
227

228
    .. v2betastatus:: ToDtype transform
Nicolas Hug's avatar
Nicolas Hug committed
229
230

    Args:
Nicolas Hug's avatar
Nicolas Hug committed
231
232
233
234
        dtype (``torch.dtype`` or dict of ``Datapoint`` -> ``torch.dtype``): The dtype to convert to.
            A dict can be passed to specify per-datapoint conversions, e.g.
            ``dtype={datapoints.Image: torch.float32, datapoints.Video:
            torch.float64}``.
Nicolas Hug's avatar
Nicolas Hug committed
235
236
    """

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    _transformed_types = (torch.Tensor,)

    def __init__(self, dtype: Union[torch.dtype, Dict[Type, Optional[torch.dtype]]]) -> None:
        super().__init__()
        if not isinstance(dtype, dict):
            dtype = _get_defaultdict(dtype)
        if torch.Tensor in dtype and any(cls in dtype for cls in [datapoints.Image, datapoints.Video]):
            warnings.warn(
                "Got `dtype` values for `torch.Tensor` and either `datapoints.Image` or `datapoints.Video`. "
                "Note that a plain `torch.Tensor` will *not* be transformed by this (or any other transformation) "
                "in case a `datapoints.Image` or `datapoints.Video` is present in the input."
            )
        self.dtype = dtype

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        dtype = self.dtype[type(inpt)]
        if dtype is None:
            return inpt
        return inpt.to(dtype=dtype)


258
class SanitizeBoundingBox(Transform):
Nicolas Hug's avatar
Nicolas Hug committed
259
260
    """[BETA] Remove degenerate/invalid bounding boxes and their corresponding labels and masks.

261
    .. v2betastatus:: SanitizeBoundingBox transform
Nicolas Hug's avatar
Nicolas Hug committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

    This transform removes bounding boxes and their associated labels/masks that:

    - are below a given ``min_size``: by default this also removes degenerate boxes that have e.g. X2 <= X1.
    - have any coordinate outside of their corresponding image. You may want to
      call :class:`~torchvision.transforms.v2.ClampBoundingBox` first to avoid undesired removals.

    It is recommended to call it at the end of a pipeline, before passing the
    input to the models. It is critical to call this transform if
    :class:`~torchvision.transforms.v2.RandomIoUCrop` was called.
    If you want to be extra careful, you may call it after all transforms that
    may modify bounding boxes but once at the end should be enough in most
    cases.

    Args:
        min_size (float, optional) The size below which bounding boxes are removed. Default is 1.
        labels_getter (callable or str or None, optional): indicates how to identify the labels in the input.
            It can be a str in which case the input is expected to be a dict, and ``labels_getter`` then specifies
            the key whose value corresponds to the labels. It can also be a callable that takes the same input
            as the transform, and returns the labels.
            By default, this will try to find a "labels" key in the input, if
            the input is a dict or it is a tuple whose second element is a dict.
            This heuristic should work well with a lot of datasets, including the built-in torchvision datasets.
    """
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

    def __init__(
        self,
        min_size: float = 1.0,
        labels_getter: Union[Callable[[Any], Optional[torch.Tensor]], str, None] = "default",
    ) -> None:
        super().__init__()

        if min_size < 1:
            raise ValueError(f"min_size must be >= 1, got {min_size}.")
        self.min_size = min_size

        self.labels_getter = labels_getter
        self._labels_getter: Optional[Callable[[Any], Optional[torch.Tensor]]]
        if labels_getter == "default":
            self._labels_getter = self._find_labels_default_heuristic
        elif callable(labels_getter):
            self._labels_getter = labels_getter
        elif isinstance(labels_getter, str):
305
            self._labels_getter = lambda inputs: SanitizeBoundingBox._get_dict_or_second_tuple_entry(inputs)[
306
307
                labels_getter  # type: ignore[index]
            ]
308
309
310
311
312
313
314
315
        elif labels_getter is None:
            self._labels_getter = None
        else:
            raise ValueError(
                "labels_getter should either be a str, callable, or 'default'. "
                f"Got {labels_getter} of type {type(labels_getter)}."
            )

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    @staticmethod
    def _get_dict_or_second_tuple_entry(inputs: Any) -> Mapping[str, Any]:
        # datasets outputs may be plain dicts like {"img": ..., "labels": ..., "bbox": ...}
        # or tuples like (img, {"labels":..., "bbox": ...})
        # This hacky helper accounts for both structures.
        if isinstance(inputs, tuple):
            inputs = inputs[1]

        if not isinstance(inputs, collections.abc.Mapping):
            raise ValueError(
                f"If labels_getter is a str or 'default', "
                f"then the input to forward() must be a dict or a tuple whose second element is a dict."
                f" Got {type(inputs)} instead."
            )
        return inputs

332
333
    @staticmethod
    def _find_labels_default_heuristic(inputs: Dict[str, Any]) -> Optional[torch.Tensor]:
334
        # Tries to find a "labels" key, otherwise tries for the first key that contains "label" - case insensitive
335
        # Returns None if nothing is found
336
        inputs = SanitizeBoundingBox._get_dict_or_second_tuple_entry(inputs)
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        candidate_key = None
        with suppress(StopIteration):
            candidate_key = next(key for key in inputs.keys() if key.lower() == "labels")
        if candidate_key is None:
            with suppress(StopIteration):
                candidate_key = next(key for key in inputs.keys() if "label" in key.lower())
        if candidate_key is None:
            raise ValueError(
                "Could not infer where the labels are in the sample. Try passing a callable as the labels_getter parameter?"
                "If there are no samples and it is by design, pass labels_getter=None."
            )
        return inputs[candidate_key]

    def forward(self, *inputs: Any) -> Any:
        inputs = inputs if len(inputs) > 1 else inputs[0]

        if self._labels_getter is None:
            labels = None
        else:
            labels = self._labels_getter(inputs)
            if labels is not None and not isinstance(labels, torch.Tensor):
                raise ValueError(f"The labels in the input to forward() must be a tensor, got {type(labels)} instead.")

        flat_inputs, spec = tree_flatten(inputs)
        # TODO: this enforces one single BoundingBox entry.
        # Assuming this transform needs to be called at the end of *any* pipeline that has bboxes...
        # should we just enforce it for all transforms?? What are the benefits of *not* enforcing this?
        boxes = query_bounding_box(flat_inputs)

        if boxes.ndim != 2:
            raise ValueError(f"boxes must be of shape (num_boxes, 4), got {boxes.shape}")

        if labels is not None and boxes.shape[0] != labels.shape[0]:
            raise ValueError(
                f"Number of boxes (shape={boxes.shape}) and number of labels (shape={labels.shape}) do not match."
            )

        boxes = cast(
            datapoints.BoundingBox,
            F.convert_format_bounding_box(
                boxes,
                new_format=datapoints.BoundingBoxFormat.XYXY,
            ),
        )
        ws, hs = boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1]
382
        valid = (ws >= self.min_size) & (hs >= self.min_size) & (boxes >= 0).all(dim=-1)
383
384
385
        # TODO: Do we really need to check for out of bounds here? All
        # transforms should be clamping anyway, so this should never happen?
        image_h, image_w = boxes.spatial_size
386
387
        valid &= (boxes[:, 0] <= image_w) & (boxes[:, 2] <= image_w)
        valid &= (boxes[:, 1] <= image_h) & (boxes[:, 3] <= image_h)
388

389
        params = dict(valid=valid, labels=labels)
390
391
392
393
394
395
396
397
398
399
        flat_outputs = [
            # Even-though it may look like we're transforming all inputs, we don't:
            # _transform() will only care about BoundingBoxes and the labels
            self._transform(inpt, params)
            for inpt in flat_inputs
        ]

        return tree_unflatten(flat_outputs, spec)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
400
401
        is_label = inpt is not None and inpt is params["labels"]
        is_bounding_box_or_mask = isinstance(inpt, (datapoints.BoundingBox, datapoints.Mask))
402

403
404
        if not (is_label or is_bounding_box_or_mask):
            return inpt
405

406
407
408
409
410
411
        output = inpt[params["valid"]]

        if is_label:
            return output

        return type(inpt).wrap_like(inpt, output)