_optical_flow.py 18.1 KB
Newer Older
1
import itertools
2
3
4
5
6
7
8
9
10
11
import os
from abc import ABC, abstractmethod
from glob import glob
from pathlib import Path

import numpy as np
import torch
from PIL import Image

from ..io.image import _read_png_16
12
from .utils import verify_str_arg, _read_pfm
13
14
15
16
17
18
from .vision import VisionDataset


__all__ = (
    "KittiFlow",
    "Sintel",
19
    "FlyingThings3D",
20
    "FlyingChairs",
21
    "HD1K",
22
23
24
25
)


class FlowDataset(ABC, VisionDataset):
26
27
28
    # Some datasets like Kitti have a built-in valid_flow_mask, indicating which flow values are valid
    # For those we return (img1, img2, flow, valid_flow_mask), and for the rest we return (img1, img2, flow),
    # and it's up to whatever consumes the dataset to decide what valid_flow_mask should be.
29
30
31
32
33
34
35
36
37
38
39
    _has_builtin_flow_mask = False

    def __init__(self, root, transforms=None):

        super().__init__(root=root)
        self.transforms = transforms

        self._flow_list = []
        self._image_list = []

    def _read_img(self, file_name):
40
41
42
43
        img = Image.open(file_name)
        if img.mode != "RGB":
            img = img.convert("RGB")
        return img
44
45
46

    @abstractmethod
    def _read_flow(self, file_name):
47
        # Return the flow or a tuple with the flow and the valid_flow_mask if _has_builtin_flow_mask is True
48
49
50
51
52
53
54
55
56
57
        pass

    def __getitem__(self, index):

        img1 = self._read_img(self._image_list[index][0])
        img2 = self._read_img(self._image_list[index][1])

        if self._flow_list:  # it will be empty for some dataset when split="test"
            flow = self._read_flow(self._flow_list[index])
            if self._has_builtin_flow_mask:
58
                flow, valid_flow_mask = flow
59
            else:
60
                valid_flow_mask = None
61
        else:
62
            flow = valid_flow_mask = None
63
64

        if self.transforms is not None:
65
            img1, img2, flow, valid_flow_mask = self.transforms(img1, img2, flow, valid_flow_mask)
66

67
68
69
        if self._has_builtin_flow_mask or valid_flow_mask is not None:
            # The `or valid_flow_mask is not None` part is here because the mask can be generated within a transform
            return img1, img2, flow, valid_flow_mask
70
71
72
73
74
75
        else:
            return img1, img2, flow

    def __len__(self):
        return len(self._image_list)

76
77
78
    def __rmul__(self, v):
        return torch.utils.data.ConcatDataset([self] * v)

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

class Sintel(FlowDataset):
    """`Sintel <http://sintel.is.tue.mpg.de/>`_ Dataset for optical flow.

    The dataset is expected to have the following structure: ::

        root
            Sintel
                testing
                    clean
                        scene_1
                        scene_2
                        ...
                    final
                        scene_1
                        scene_2
                        ...
                training
                    clean
                        scene_1
                        scene_2
                        ...
                    final
                        scene_1
                        scene_2
                        ...
                    flow
                        scene_1
                        scene_2
                        ...

    Args:
        root (string): Root directory of the Sintel Dataset.
        split (string, optional): The dataset split, either "train" (default) or "test"
113
        pass_name (string, optional): The pass to use, either "clean" (default), "final", or "both". See link above for
114
115
            details on the different passes.
        transforms (callable, optional): A function/transform that takes in
116
117
            ``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
            ``valid_flow_mask`` is expected for consistency with other datasets which
118
119
120
121
122
123
            return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
    """

    def __init__(self, root, split="train", pass_name="clean", transforms=None):
        super().__init__(root=root, transforms=transforms)

124
        verify_str_arg(split, "split", valid_values=("train", "test"))
125
126
        verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final", "both"))
        passes = ["clean", "final"] if pass_name == "both" else [pass_name]
127
128
129
130

        root = Path(root) / "Sintel"
        flow_root = root / "training" / "flow"

131
132
133
134
135
136
137
        for pass_name in passes:
            split_dir = "training" if split == "train" else split
            image_root = root / split_dir / pass_name
            for scene in os.listdir(image_root):
                image_list = sorted(glob(str(image_root / scene / "*.png")))
                for i in range(len(image_list) - 1):
                    self._image_list += [[image_list[i], image_list[i + 1]]]
138

139
140
                if split == "train":
                    self._flow_list += sorted(glob(str(flow_root / scene / "*.flo")))
141
142
143
144
145
146
147
148

    def __getitem__(self, index):
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
149
150
151
152
153
            tuple: A 3-tuple with ``(img1, img2, flow)``.
            The flow is a numpy array of shape (2, H, W) and the images are PIL images.
            ``flow`` is None if ``split="test"``.
            If a valid flow mask is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` is returned.
154
155
156
157
158
159
160
161
162
163
164
165
166
        """
        return super().__getitem__(index)

    def _read_flow(self, file_name):
        return _read_flo(file_name)


class KittiFlow(FlowDataset):
    """`KITTI <http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow>`__ dataset for optical flow (2015).

    The dataset is expected to have the following structure: ::

        root
167
            KittiFlow
168
169
170
171
172
173
174
175
176
177
                testing
                    image_2
                training
                    image_2
                    flow_occ

    Args:
        root (string): Root directory of the KittiFlow Dataset.
        split (string, optional): The dataset split, either "train" (default) or "test"
        transforms (callable, optional): A function/transform that takes in
178
            ``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
179
180
181
182
183
184
185
    """

    _has_builtin_flow_mask = True

    def __init__(self, root, split="train", transforms=None):
        super().__init__(root=root, transforms=transforms)

186
        verify_str_arg(split, "split", valid_values=("train", "test"))
187

188
        root = Path(root) / "KittiFlow" / (split + "ing")
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        images1 = sorted(glob(str(root / "image_2" / "*_10.png")))
        images2 = sorted(glob(str(root / "image_2" / "*_11.png")))

        if not images1 or not images2:
            raise FileNotFoundError(
                "Could not find the Kitti flow images. Please make sure the directory structure is correct."
            )

        for img1, img2 in zip(images1, images2):
            self._image_list += [[img1, img2]]

        if split == "train":
            self._flow_list = sorted(glob(str(root / "flow_occ" / "*_10.png")))

    def __getitem__(self, index):
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
210
211
            tuple: A 4-tuple with ``(img1, img2, flow, valid_flow_mask)``
            where ``valid_flow_mask`` is a numpy boolean mask of shape (H, W)
212
            indicating which flow values are valid. The flow is a numpy array of
213
214
            shape (2, H, W) and the images are PIL images. ``flow`` and ``valid_flow_mask`` are None if
            ``split="test"``.
215
216
217
218
219
220
221
        """
        return super().__getitem__(index)

    def _read_flow(self, file_name):
        return _read_16bits_png_with_flow_and_valid_mask(file_name)


222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
class FlyingChairs(FlowDataset):
    """`FlyingChairs <https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html#flyingchairs>`_ Dataset for optical flow.

    You will also need to download the FlyingChairs_train_val.txt file from the dataset page.

    The dataset is expected to have the following structure: ::

        root
            FlyingChairs
                data
                    00001_flow.flo
                    00001_img1.ppm
                    00001_img2.ppm
                    ...
                FlyingChairs_train_val.txt


    Args:
        root (string): Root directory of the FlyingChairs Dataset.
        split (string, optional): The dataset split, either "train" (default) or "val"
        transforms (callable, optional): A function/transform that takes in
243
244
            ``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
            ``valid_flow_mask`` is expected for consistency with other datasets which
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
            return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
    """

    def __init__(self, root, split="train", transforms=None):
        super().__init__(root=root, transforms=transforms)

        verify_str_arg(split, "split", valid_values=("train", "val"))

        root = Path(root) / "FlyingChairs"
        images = sorted(glob(str(root / "data" / "*.ppm")))
        flows = sorted(glob(str(root / "data" / "*.flo")))

        split_file_name = "FlyingChairs_train_val.txt"

        if not os.path.exists(root / split_file_name):
            raise FileNotFoundError(
                "The FlyingChairs_train_val.txt file was not found - please download it from the dataset page (see docstring)."
            )

        split_list = np.loadtxt(str(root / split_file_name), dtype=np.int32)
        for i in range(len(flows)):
            split_id = split_list[i]
            if (split == "train" and split_id == 1) or (split == "val" and split_id == 2):
                self._flow_list += [flows[i]]
                self._image_list += [[images[2 * i], images[2 * i + 1]]]

    def __getitem__(self, index):
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img1, img2, flow)``.
            The flow is a numpy array of shape (2, H, W) and the images are PIL images.
280
281
282
            ``flow`` is None if ``split="val"``.
            If a valid flow mask is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` is returned.
283
284
285
286
287
288
289
        """
        return super().__getitem__(index)

    def _read_flow(self, file_name):
        return _read_flo(file_name)


290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class FlyingThings3D(FlowDataset):
    """`FlyingThings3D <https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html>`_ dataset for optical flow.

    The dataset is expected to have the following structure: ::

        root
            FlyingThings3D
                frames_cleanpass
                    TEST
                    TRAIN
                frames_finalpass
                    TEST
                    TRAIN
                optical_flow
                    TEST
                    TRAIN

    Args:
        root (string): Root directory of the intel FlyingThings3D Dataset.
        split (string, optional): The dataset split, either "train" (default) or "test"
        pass_name (string, optional): The pass to use, either "clean" (default) or "final" or "both". See link above for
            details on the different passes.
        camera (string, optional): Which camera to return images from. Can be either "left" (default) or "right" or "both".
        transforms (callable, optional): A function/transform that takes in
314
315
            ``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
            ``valid_flow_mask`` is expected for consistency with other datasets which
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
            return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
    """

    def __init__(self, root, split="train", pass_name="clean", camera="left", transforms=None):
        super().__init__(root=root, transforms=transforms)

        verify_str_arg(split, "split", valid_values=("train", "test"))
        split = split.upper()

        verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final", "both"))
        passes = {
            "clean": ["frames_cleanpass"],
            "final": ["frames_finalpass"],
            "both": ["frames_cleanpass", "frames_finalpass"],
        }[pass_name]

        verify_str_arg(camera, "camera", valid_values=("left", "right", "both"))
        cameras = ["left", "right"] if camera == "both" else [camera]

        root = Path(root) / "FlyingThings3D"

        directions = ("into_future", "into_past")
        for pass_name, camera, direction in itertools.product(passes, cameras, directions):
            image_dirs = sorted(glob(str(root / pass_name / split / "*/*")))
340
            image_dirs = sorted(Path(image_dir) / camera for image_dir in image_dirs)
341
342

            flow_dirs = sorted(glob(str(root / "optical_flow" / split / "*/*")))
343
            flow_dirs = sorted(Path(flow_dir) / direction / camera for flow_dir in flow_dirs)
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

            if not image_dirs or not flow_dirs:
                raise FileNotFoundError(
                    "Could not find the FlyingThings3D flow images. "
                    "Please make sure the directory structure is correct."
                )

            for image_dir, flow_dir in zip(image_dirs, flow_dirs):
                images = sorted(glob(str(image_dir / "*.png")))
                flows = sorted(glob(str(flow_dir / "*.pfm")))
                for i in range(len(flows) - 1):
                    if direction == "into_future":
                        self._image_list += [[images[i], images[i + 1]]]
                        self._flow_list += [flows[i]]
                    elif direction == "into_past":
                        self._image_list += [[images[i + 1], images[i]]]
                        self._flow_list += [flows[i + 1]]

    def __getitem__(self, index):
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img1, img2, flow)``.
            The flow is a numpy array of shape (2, H, W) and the images are PIL images.
371
372
373
            ``flow`` is None if ``split="test"``.
            If a valid flow mask is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` is returned.
374
375
376
377
378
379
380
        """
        return super().__getitem__(index)

    def _read_flow(self, file_name):
        return _read_pfm(file_name)


381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
class HD1K(FlowDataset):
    """`HD1K <http://hci-benchmark.iwr.uni-heidelberg.de/>`__ dataset for optical flow.

    The dataset is expected to have the following structure: ::

        root
            hd1k
                hd1k_challenge
                    image_2
                hd1k_flow_gt
                    flow_occ
                hd1k_input
                    image_2

    Args:
        root (string): Root directory of the HD1K Dataset.
        split (string, optional): The dataset split, either "train" (default) or "test"
        transforms (callable, optional): A function/transform that takes in
399
            ``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    """

    _has_builtin_flow_mask = True

    def __init__(self, root, split="train", transforms=None):
        super().__init__(root=root, transforms=transforms)

        verify_str_arg(split, "split", valid_values=("train", "test"))

        root = Path(root) / "hd1k"
        if split == "train":
            # There are 36 "sequences" and we don't want seq i to overlap with seq i + 1, so we need this for loop
            for seq_idx in range(36):
                flows = sorted(glob(str(root / "hd1k_flow_gt" / "flow_occ" / f"{seq_idx:06d}_*.png")))
                images = sorted(glob(str(root / "hd1k_input" / "image_2" / f"{seq_idx:06d}_*.png")))
                for i in range(len(flows) - 1):
                    self._flow_list += [flows[i]]
                    self._image_list += [[images[i], images[i + 1]]]
        else:
            images1 = sorted(glob(str(root / "hd1k_challenge" / "image_2" / "*10.png")))
            images2 = sorted(glob(str(root / "hd1k_challenge" / "image_2" / "*11.png")))
            for image1, image2 in zip(images1, images2):
                self._image_list += [[image1, image2]]

        if not self._image_list:
            raise FileNotFoundError(
                "Could not find the HD1K images. Please make sure the directory structure is correct."
            )

    def _read_flow(self, file_name):
        return _read_16bits_png_with_flow_and_valid_mask(file_name)

    def __getitem__(self, index):
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
439
440
            tuple: A 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` where ``valid_flow_mask``
            is a numpy boolean mask of shape (H, W)
441
            indicating which flow values are valid. The flow is a numpy array of
442
443
            shape (2, H, W) and the images are PIL images. ``flow`` and ``valid_flow_mask`` are None if
            ``split="test"``.
444
445
446
447
        """
        return super().__getitem__(index)


448
449
450
451
def _read_flo(file_name):
    """Read .flo file in Middlebury format"""
    # Code adapted from:
    # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
452
453
    # Everything needs to be in little Endian according to
    # https://vision.middlebury.edu/flow/code/flow-code/README.txt
454
    with open(file_name, "rb") as f:
455
456
        magic = np.fromfile(f, "c", count=4).tobytes()
        if magic != b"PIEH":
457
458
            raise ValueError("Magic number incorrect. Invalid .flo file")

459
460
461
        w = int(np.fromfile(f, "<i4", count=1))
        h = int(np.fromfile(f, "<i4", count=1))
        data = np.fromfile(f, "<f4", count=2 * w * h)
462
        return data.reshape(h, w, 2).transpose(2, 0, 1)
463
464
465
466
467


def _read_16bits_png_with_flow_and_valid_mask(file_name):

    flow_and_valid = _read_png_16(file_name).to(torch.float32)
468
    flow, valid_flow_mask = flow_and_valid[:2, :, :], flow_and_valid[2, :, :]
469
    flow = (flow - 2 ** 15) / 64  # This conversion is explained somewhere on the kitti archive
470
    valid_flow_mask = valid_flow_mask.bool()
471
472

    # For consistency with other datasets, we convert to numpy
473
    return flow.numpy(), valid_flow_mask.numpy()