import itertools
import os
from abc import ABC, abstractmethod
from glob import glob
from pathlib import Path
import numpy as np
import torch
from PIL import Image
from ..io.image import _read_png_16
from .utils import verify_str_arg, _read_pfm
from .vision import VisionDataset
__all__ = (
"KittiFlow",
"Sintel",
"FlyingThings3D",
"FlyingChairs",
"HD1K",
)
class FlowDataset(ABC, VisionDataset):
# Some datasets like Kitti have a built-in valid_flow_mask, indicating which flow values are valid
# For those we return (img1, img2, flow, valid_flow_mask), and for the rest we return (img1, img2, flow),
# and it's up to whatever consumes the dataset to decide what valid_flow_mask should be.
_has_builtin_flow_mask = False
def __init__(self, root, transforms=None):
super().__init__(root=root)
self.transforms = transforms
self._flow_list = []
self._image_list = []
def _read_img(self, file_name):
img = Image.open(file_name)
if img.mode != "RGB":
img = img.convert("RGB")
return img
@abstractmethod
def _read_flow(self, file_name):
# Return the flow or a tuple with the flow and the valid_flow_mask if _has_builtin_flow_mask is True
pass
def __getitem__(self, index):
img1 = self._read_img(self._image_list[index][0])
img2 = self._read_img(self._image_list[index][1])
if self._flow_list: # it will be empty for some dataset when split="test"
flow = self._read_flow(self._flow_list[index])
if self._has_builtin_flow_mask:
flow, valid_flow_mask = flow
else:
valid_flow_mask = None
else:
flow = valid_flow_mask = None
if self.transforms is not None:
img1, img2, flow, valid_flow_mask = self.transforms(img1, img2, flow, valid_flow_mask)
if self._has_builtin_flow_mask or valid_flow_mask is not None:
# The `or valid_flow_mask is not None` part is here because the mask can be generated within a transform
return img1, img2, flow, valid_flow_mask
else:
return img1, img2, flow
def __len__(self):
return len(self._image_list)
def __rmul__(self, v):
return torch.utils.data.ConcatDataset([self] * v)
class Sintel(FlowDataset):
"""`Sintel `_ Dataset for optical flow.
The dataset is expected to have the following structure: ::
root
Sintel
testing
clean
scene_1
scene_2
...
final
scene_1
scene_2
...
training
clean
scene_1
scene_2
...
final
scene_1
scene_2
...
flow
scene_1
scene_2
...
Args:
root (string): Root directory of the Sintel Dataset.
split (string, optional): The dataset split, either "train" (default) or "test"
pass_name (string, optional): The pass to use, either "clean" (default), "final", or "both". See link above for
details on the different passes.
transforms (callable, optional): A function/transform that takes in
``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
``valid_flow_mask`` is expected for consistency with other datasets which
return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
"""
def __init__(self, root, split="train", pass_name="clean", transforms=None):
super().__init__(root=root, transforms=transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final", "both"))
passes = ["clean", "final"] if pass_name == "both" else [pass_name]
root = Path(root) / "Sintel"
flow_root = root / "training" / "flow"
for pass_name in passes:
split_dir = "training" if split == "train" else split
image_root = root / split_dir / pass_name
for scene in os.listdir(image_root):
image_list = sorted(glob(str(image_root / scene / "*.png")))
for i in range(len(image_list) - 1):
self._image_list += [[image_list[i], image_list[i + 1]]]
if split == "train":
self._flow_list += sorted(glob(str(flow_root / scene / "*.flo")))
def __getitem__(self, index):
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 3-tuple with ``(img1, img2, flow)``.
The flow is a numpy array of shape (2, H, W) and the images are PIL images.
``flow`` is None if ``split="test"``.
If a valid flow mask is generated within the ``transforms`` parameter,
a 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` is returned.
"""
return super().__getitem__(index)
def _read_flow(self, file_name):
return _read_flo(file_name)
class KittiFlow(FlowDataset):
"""`KITTI `__ dataset for optical flow (2015).
The dataset is expected to have the following structure: ::
root
KittiFlow
testing
image_2
training
image_2
flow_occ
Args:
root (string): Root directory of the KittiFlow Dataset.
split (string, optional): The dataset split, either "train" (default) or "test"
transforms (callable, optional): A function/transform that takes in
``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
"""
_has_builtin_flow_mask = True
def __init__(self, root, split="train", transforms=None):
super().__init__(root=root, transforms=transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
root = Path(root) / "KittiFlow" / (split + "ing")
images1 = sorted(glob(str(root / "image_2" / "*_10.png")))
images2 = sorted(glob(str(root / "image_2" / "*_11.png")))
if not images1 or not images2:
raise FileNotFoundError(
"Could not find the Kitti flow images. Please make sure the directory structure is correct."
)
for img1, img2 in zip(images1, images2):
self._image_list += [[img1, img2]]
if split == "train":
self._flow_list = sorted(glob(str(root / "flow_occ" / "*_10.png")))
def __getitem__(self, index):
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 4-tuple with ``(img1, img2, flow, valid_flow_mask)``
where ``valid_flow_mask`` is a numpy boolean mask of shape (H, W)
indicating which flow values are valid. The flow is a numpy array of
shape (2, H, W) and the images are PIL images. ``flow`` and ``valid_flow_mask`` are None if
``split="test"``.
"""
return super().__getitem__(index)
def _read_flow(self, file_name):
return _read_16bits_png_with_flow_and_valid_mask(file_name)
class FlyingChairs(FlowDataset):
"""`FlyingChairs `_ Dataset for optical flow.
You will also need to download the FlyingChairs_train_val.txt file from the dataset page.
The dataset is expected to have the following structure: ::
root
FlyingChairs
data
00001_flow.flo
00001_img1.ppm
00001_img2.ppm
...
FlyingChairs_train_val.txt
Args:
root (string): Root directory of the FlyingChairs Dataset.
split (string, optional): The dataset split, either "train" (default) or "val"
transforms (callable, optional): A function/transform that takes in
``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
``valid_flow_mask`` is expected for consistency with other datasets which
return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
"""
def __init__(self, root, split="train", transforms=None):
super().__init__(root=root, transforms=transforms)
verify_str_arg(split, "split", valid_values=("train", "val"))
root = Path(root) / "FlyingChairs"
images = sorted(glob(str(root / "data" / "*.ppm")))
flows = sorted(glob(str(root / "data" / "*.flo")))
split_file_name = "FlyingChairs_train_val.txt"
if not os.path.exists(root / split_file_name):
raise FileNotFoundError(
"The FlyingChairs_train_val.txt file was not found - please download it from the dataset page (see docstring)."
)
split_list = np.loadtxt(str(root / split_file_name), dtype=np.int32)
for i in range(len(flows)):
split_id = split_list[i]
if (split == "train" and split_id == 1) or (split == "val" and split_id == 2):
self._flow_list += [flows[i]]
self._image_list += [[images[2 * i], images[2 * i + 1]]]
def __getitem__(self, index):
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 3-tuple with ``(img1, img2, flow)``.
The flow is a numpy array of shape (2, H, W) and the images are PIL images.
``flow`` is None if ``split="val"``.
If a valid flow mask is generated within the ``transforms`` parameter,
a 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` is returned.
"""
return super().__getitem__(index)
def _read_flow(self, file_name):
return _read_flo(file_name)
class FlyingThings3D(FlowDataset):
"""`FlyingThings3D `_ dataset for optical flow.
The dataset is expected to have the following structure: ::
root
FlyingThings3D
frames_cleanpass
TEST
TRAIN
frames_finalpass
TEST
TRAIN
optical_flow
TEST
TRAIN
Args:
root (string): Root directory of the intel FlyingThings3D Dataset.
split (string, optional): The dataset split, either "train" (default) or "test"
pass_name (string, optional): The pass to use, either "clean" (default) or "final" or "both". See link above for
details on the different passes.
camera (string, optional): Which camera to return images from. Can be either "left" (default) or "right" or "both".
transforms (callable, optional): A function/transform that takes in
``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
``valid_flow_mask`` is expected for consistency with other datasets which
return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
"""
def __init__(self, root, split="train", pass_name="clean", camera="left", transforms=None):
super().__init__(root=root, transforms=transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
split = split.upper()
verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final", "both"))
passes = {
"clean": ["frames_cleanpass"],
"final": ["frames_finalpass"],
"both": ["frames_cleanpass", "frames_finalpass"],
}[pass_name]
verify_str_arg(camera, "camera", valid_values=("left", "right", "both"))
cameras = ["left", "right"] if camera == "both" else [camera]
root = Path(root) / "FlyingThings3D"
directions = ("into_future", "into_past")
for pass_name, camera, direction in itertools.product(passes, cameras, directions):
image_dirs = sorted(glob(str(root / pass_name / split / "*/*")))
image_dirs = sorted(Path(image_dir) / camera for image_dir in image_dirs)
flow_dirs = sorted(glob(str(root / "optical_flow" / split / "*/*")))
flow_dirs = sorted(Path(flow_dir) / direction / camera for flow_dir in flow_dirs)
if not image_dirs or not flow_dirs:
raise FileNotFoundError(
"Could not find the FlyingThings3D flow images. "
"Please make sure the directory structure is correct."
)
for image_dir, flow_dir in zip(image_dirs, flow_dirs):
images = sorted(glob(str(image_dir / "*.png")))
flows = sorted(glob(str(flow_dir / "*.pfm")))
for i in range(len(flows) - 1):
if direction == "into_future":
self._image_list += [[images[i], images[i + 1]]]
self._flow_list += [flows[i]]
elif direction == "into_past":
self._image_list += [[images[i + 1], images[i]]]
self._flow_list += [flows[i + 1]]
def __getitem__(self, index):
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 3-tuple with ``(img1, img2, flow)``.
The flow is a numpy array of shape (2, H, W) and the images are PIL images.
``flow`` is None if ``split="test"``.
If a valid flow mask is generated within the ``transforms`` parameter,
a 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` is returned.
"""
return super().__getitem__(index)
def _read_flow(self, file_name):
return _read_pfm(file_name)
class HD1K(FlowDataset):
"""`HD1K `__ dataset for optical flow.
The dataset is expected to have the following structure: ::
root
hd1k
hd1k_challenge
image_2
hd1k_flow_gt
flow_occ
hd1k_input
image_2
Args:
root (string): Root directory of the HD1K Dataset.
split (string, optional): The dataset split, either "train" (default) or "test"
transforms (callable, optional): A function/transform that takes in
``img1, img2, flow, valid_flow_mask`` and returns a transformed version.
"""
_has_builtin_flow_mask = True
def __init__(self, root, split="train", transforms=None):
super().__init__(root=root, transforms=transforms)
verify_str_arg(split, "split", valid_values=("train", "test"))
root = Path(root) / "hd1k"
if split == "train":
# There are 36 "sequences" and we don't want seq i to overlap with seq i + 1, so we need this for loop
for seq_idx in range(36):
flows = sorted(glob(str(root / "hd1k_flow_gt" / "flow_occ" / f"{seq_idx:06d}_*.png")))
images = sorted(glob(str(root / "hd1k_input" / "image_2" / f"{seq_idx:06d}_*.png")))
for i in range(len(flows) - 1):
self._flow_list += [flows[i]]
self._image_list += [[images[i], images[i + 1]]]
else:
images1 = sorted(glob(str(root / "hd1k_challenge" / "image_2" / "*10.png")))
images2 = sorted(glob(str(root / "hd1k_challenge" / "image_2" / "*11.png")))
for image1, image2 in zip(images1, images2):
self._image_list += [[image1, image2]]
if not self._image_list:
raise FileNotFoundError(
"Could not find the HD1K images. Please make sure the directory structure is correct."
)
def _read_flow(self, file_name):
return _read_16bits_png_with_flow_and_valid_mask(file_name)
def __getitem__(self, index):
"""Return example at given index.
Args:
index(int): The index of the example to retrieve
Returns:
tuple: A 4-tuple with ``(img1, img2, flow, valid_flow_mask)`` where ``valid_flow_mask``
is a numpy boolean mask of shape (H, W)
indicating which flow values are valid. The flow is a numpy array of
shape (2, H, W) and the images are PIL images. ``flow`` and ``valid_flow_mask`` are None if
``split="test"``.
"""
return super().__getitem__(index)
def _read_flo(file_name):
"""Read .flo file in Middlebury format"""
# Code adapted from:
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
# Everything needs to be in little Endian according to
# https://vision.middlebury.edu/flow/code/flow-code/README.txt
with open(file_name, "rb") as f:
magic = np.fromfile(f, "c", count=4).tobytes()
if magic != b"PIEH":
raise ValueError("Magic number incorrect. Invalid .flo file")
w = int(np.fromfile(f, "