_optical_flow.py 10.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import os
from abc import ABC, abstractmethod
from glob import glob
from pathlib import Path

import numpy as np
import torch
from PIL import Image

from ..io.image import _read_png_16
11
from .utils import verify_str_arg
12
13
14
15
16
17
from .vision import VisionDataset


__all__ = (
    "KittiFlow",
    "Sintel",
18
    "FlyingChairs",
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
)


class FlowDataset(ABC, VisionDataset):
    # Some datasets like Kitti have a built-in valid mask, indicating which flow values are valid
    # For those we return (img1, img2, flow, valid), and for the rest we return (img1, img2, flow),
    # and it's up to whatever consumes the dataset to decide what `valid` should be.
    _has_builtin_flow_mask = False

    def __init__(self, root, transforms=None):

        super().__init__(root=root)
        self.transforms = transforms

        self._flow_list = []
        self._image_list = []

    def _read_img(self, file_name):
        return Image.open(file_name)

    @abstractmethod
    def _read_flow(self, file_name):
        # Return the flow or a tuple with the flow and the valid mask if _has_builtin_flow_mask is True
        pass

    def __getitem__(self, index):

        img1 = self._read_img(self._image_list[index][0])
        img2 = self._read_img(self._image_list[index][1])

        if self._flow_list:  # it will be empty for some dataset when split="test"
            flow = self._read_flow(self._flow_list[index])
            if self._has_builtin_flow_mask:
                flow, valid = flow
            else:
                valid = None
        else:
            flow = valid = None

        if self.transforms is not None:
            img1, img2, flow, valid = self.transforms(img1, img2, flow, valid)

        if self._has_builtin_flow_mask:
            return img1, img2, flow, valid
        else:
            return img1, img2, flow

    def __len__(self):
        return len(self._image_list)


class Sintel(FlowDataset):
    """`Sintel <http://sintel.is.tue.mpg.de/>`_ Dataset for optical flow.

    The dataset is expected to have the following structure: ::

        root
            Sintel
                testing
                    clean
                        scene_1
                        scene_2
                        ...
                    final
                        scene_1
                        scene_2
                        ...
                training
                    clean
                        scene_1
                        scene_2
                        ...
                    final
                        scene_1
                        scene_2
                        ...
                    flow
                        scene_1
                        scene_2
                        ...

    Args:
        root (string): Root directory of the Sintel Dataset.
        split (string, optional): The dataset split, either "train" (default) or "test"
        pass_name (string, optional): The pass to use, either "clean" (default) or "final". See link above for
            details on the different passes.
        transforms (callable, optional): A function/transform that takes in
            ``img1, img2, flow, valid`` and returns a transformed version.
            ``valid`` is expected for consistency with other datasets which
            return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
    """

    def __init__(self, root, split="train", pass_name="clean", transforms=None):
        super().__init__(root=root, transforms=transforms)

114
115
        verify_str_arg(split, "split", valid_values=("train", "test"))
        verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final"))
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

        root = Path(root) / "Sintel"

        split_dir = "training" if split == "train" else split
        image_root = root / split_dir / pass_name
        flow_root = root / "training" / "flow"

        for scene in os.listdir(image_root):
            image_list = sorted(glob(str(image_root / scene / "*.png")))
            for i in range(len(image_list) - 1):
                self._image_list += [[image_list[i], image_list[i + 1]]]

            if split == "train":
                self._flow_list += sorted(glob(str(flow_root / scene / "*.flo")))

    def __getitem__(self, index):
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: If ``split="train"`` a 3-tuple with ``(img1, img2, flow)``.
            The flow is a numpy array of shape (2, H, W) and the images are PIL images. If `split="test"`, a
            3-tuple with ``(img1, img2, None)`` is returned.
        """
        return super().__getitem__(index)

    def _read_flow(self, file_name):
        return _read_flo(file_name)


class KittiFlow(FlowDataset):
    """`KITTI <http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow>`__ dataset for optical flow (2015).

    The dataset is expected to have the following structure: ::

        root
            Kitti
                testing
                    image_2
                training
                    image_2
                    flow_occ

    Args:
        root (string): Root directory of the KittiFlow Dataset.
        split (string, optional): The dataset split, either "train" (default) or "test"
        transforms (callable, optional): A function/transform that takes in
            ``img1, img2, flow, valid`` and returns a transformed version.
    """

    _has_builtin_flow_mask = True

    def __init__(self, root, split="train", transforms=None):
        super().__init__(root=root, transforms=transforms)

173
        verify_str_arg(split, "split", valid_values=("train", "test"))
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

        root = Path(root) / "Kitti" / (split + "ing")
        images1 = sorted(glob(str(root / "image_2" / "*_10.png")))
        images2 = sorted(glob(str(root / "image_2" / "*_11.png")))

        if not images1 or not images2:
            raise FileNotFoundError(
                "Could not find the Kitti flow images. Please make sure the directory structure is correct."
            )

        for img1, img2 in zip(images1, images2):
            self._image_list += [[img1, img2]]

        if split == "train":
            self._flow_list = sorted(glob(str(root / "flow_occ" / "*_10.png")))

    def __getitem__(self, index):
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: If ``split="train"`` a 4-tuple with ``(img1, img2, flow,
            valid)`` where ``valid`` is a numpy boolean mask of shape (H, W)
            indicating which flow values are valid. The flow is a numpy array of
            shape (2, H, W) and the images are PIL images. If `split="test"`, a
            4-tuple with ``(img1, img2, None, None)`` is returned.
        """
        return super().__getitem__(index)

    def _read_flow(self, file_name):
        return _read_16bits_png_with_flow_and_valid_mask(file_name)


209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
class FlyingChairs(FlowDataset):
    """`FlyingChairs <https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html#flyingchairs>`_ Dataset for optical flow.

    You will also need to download the FlyingChairs_train_val.txt file from the dataset page.

    The dataset is expected to have the following structure: ::

        root
            FlyingChairs
                data
                    00001_flow.flo
                    00001_img1.ppm
                    00001_img2.ppm
                    ...
                FlyingChairs_train_val.txt


    Args:
        root (string): Root directory of the FlyingChairs Dataset.
        split (string, optional): The dataset split, either "train" (default) or "val"
        transforms (callable, optional): A function/transform that takes in
            ``img1, img2, flow, valid`` and returns a transformed version.
            ``valid`` is expected for consistency with other datasets which
            return a built-in valid mask, such as :class:`~torchvision.datasets.KittiFlow`.
    """

    def __init__(self, root, split="train", transforms=None):
        super().__init__(root=root, transforms=transforms)

        verify_str_arg(split, "split", valid_values=("train", "val"))

        root = Path(root) / "FlyingChairs"
        images = sorted(glob(str(root / "data" / "*.ppm")))
        flows = sorted(glob(str(root / "data" / "*.flo")))

        split_file_name = "FlyingChairs_train_val.txt"

        if not os.path.exists(root / split_file_name):
            raise FileNotFoundError(
                "The FlyingChairs_train_val.txt file was not found - please download it from the dataset page (see docstring)."
            )

        split_list = np.loadtxt(str(root / split_file_name), dtype=np.int32)
        for i in range(len(flows)):
            split_id = split_list[i]
            if (split == "train" and split_id == 1) or (split == "val" and split_id == 2):
                self._flow_list += [flows[i]]
                self._image_list += [[images[2 * i], images[2 * i + 1]]]

    def __getitem__(self, index):
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img1, img2, flow)``.
            The flow is a numpy array of shape (2, H, W) and the images are PIL images.
        """
        return super().__getitem__(index)

    def _read_flow(self, file_name):
        return _read_flo(file_name)


274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def _read_flo(file_name):
    """Read .flo file in Middlebury format"""
    # Code adapted from:
    # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
    # WARNING: this will work on little-endian architectures (eg Intel x86) only!
    with open(file_name, "rb") as f:
        magic = np.fromfile(f, np.float32, count=1)
        if 202021.25 != magic:
            raise ValueError("Magic number incorrect. Invalid .flo file")

        w = int(np.fromfile(f, np.int32, count=1))
        h = int(np.fromfile(f, np.int32, count=1))
        data = np.fromfile(f, np.float32, count=2 * w * h)
        return data.reshape(2, h, w)


def _read_16bits_png_with_flow_and_valid_mask(file_name):

    flow_and_valid = _read_png_16(file_name).to(torch.float32)
    flow, valid = flow_and_valid[:2, :, :], flow_and_valid[2, :, :]
    flow = (flow - 2 ** 15) / 64  # This conversion is explained somewhere on the kitti archive

    # For consistency with other datasets, we convert to numpy
    return flow.numpy(), valid.numpy()