test_transforms_video.py 6.5 KB
Newer Older
Zhicheng Yan's avatar
Zhicheng Yan committed
1
import torch
2
from torchvision.transforms import Compose
Zhicheng Yan's avatar
Zhicheng Yan committed
3
4
5
import unittest
import random
import numpy as np
6
import warnings
Zhicheng Yan's avatar
Zhicheng Yan committed
7
8
9
10
11
12
13

try:
    from scipy import stats
except ImportError:
    stats = None


14
15
16
17
18
with warnings.catch_warnings(record=True):
    warnings.simplefilter("always")
    import torchvision.transforms._transforms_video as transforms


Francisco Massa's avatar
Francisco Massa committed
19
class TestVideoTransforms(unittest.TestCase):
Zhicheng Yan's avatar
Zhicheng Yan committed
20
21
22
23
24
25
26
27

    def test_random_crop_video(self):
        numFrames = random.randint(4, 128)
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2
        clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
28
        result = Compose([
Zhicheng Yan's avatar
Zhicheng Yan committed
29
30
31
            transforms.ToTensorVideo(),
            transforms.RandomCropVideo((oheight, owidth)),
        ])(clip)
32
33
        self.assertEqual(result.size(2), oheight)
        self.assertEqual(result.size(3), owidth)
Zhicheng Yan's avatar
Zhicheng Yan committed
34
35
36
37
38
39
40
41
42
43

        transforms.RandomCropVideo((oheight, owidth)).__repr__()

    def test_random_resized_crop_video(self):
        numFrames = random.randint(4, 128)
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2
        clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
44
        result = Compose([
Zhicheng Yan's avatar
Zhicheng Yan committed
45
46
47
            transforms.ToTensorVideo(),
            transforms.RandomResizedCropVideo((oheight, owidth)),
        ])(clip)
48
49
        self.assertEqual(result.size(2), oheight)
        self.assertEqual(result.size(3), owidth)
Zhicheng Yan's avatar
Zhicheng Yan committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

        transforms.RandomResizedCropVideo((oheight, owidth)).__repr__()

    def test_center_crop_video(self):
        numFrames = random.randint(4, 128)
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2

        clip = torch.ones((numFrames, height, width, 3), dtype=torch.uint8) * 255
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        clipNarrow = clip[:, oh1:oh1 + oheight, ow1:ow1 + owidth, :]
        clipNarrow.fill_(0)
65
        result = Compose([
Zhicheng Yan's avatar
Zhicheng Yan committed
66
67
68
69
70
71
72
73
74
75
            transforms.ToTensorVideo(),
            transforms.CenterCropVideo((oheight, owidth)),
        ])(clip)

        msg = "height: " + str(height) + " width: " \
            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
        self.assertEqual(result.sum().item(), 0, msg)

        oheight += 1
        owidth += 1
76
        result = Compose([
Zhicheng Yan's avatar
Zhicheng Yan committed
77
78
79
80
81
82
83
84
85
86
87
            transforms.ToTensorVideo(),
            transforms.CenterCropVideo((oheight, owidth)),
        ])(clip)
        sum1 = result.sum()

        msg = "height: " + str(height) + " width: " \
            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
        self.assertEqual(sum1.item() > 1, True, msg)

        oheight += 1
        owidth += 1
88
        result = Compose([
Zhicheng Yan's avatar
Zhicheng Yan committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
            transforms.ToTensorVideo(),
            transforms.CenterCropVideo((oheight, owidth)),
        ])(clip)
        sum2 = result.sum()

        msg = "height: " + str(height) + " width: " \
            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
        self.assertTrue(sum2.item() > 1, msg)
        self.assertTrue(sum2.item() > sum1.item(), msg)

    @unittest.skipIf(stats is None, 'scipy.stats is not available')
    def test_normalize_video(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            numFrames = random.randint(4, 128)
            height = random.randint(32, 256)
            width = random.randint(32, 256)
            mean = random.random()
            std = random.random()
            clip = torch.normal(mean, std, size=(channels, numFrames, height, width))
            mean = [clip[c].mean().item() for c in range(channels)]
            std = [clip[c].std().item() for c in range(channels)]
            normalized = transforms.NormalizeVideo(mean, std)(clip)
117
            self.assertTrue(samples_from_standard_normal(normalized))
Zhicheng Yan's avatar
Zhicheng Yan committed
118
119
120
121
122
        random.setstate(random_state)

        # Checking the optional in-place behaviour
        tensor = torch.rand((3, 128, 16, 16))
        tensor_inplace = transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)(tensor)
123
        self.assertTrue(torch.equal(tensor, tensor_inplace))
Zhicheng Yan's avatar
Zhicheng Yan committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

        transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True).__repr__()

    def test_to_tensor_video(self):
        numFrames, height, width = 64, 4, 4
        trans = transforms.ToTensorVideo()

        with self.assertRaises(TypeError):
            trans(np.random.rand(numFrames, height, width, 1).tolist())
            trans(torch.rand((numFrames, height, width, 1), dtype=torch.float))

        with self.assertRaises(ValueError):
            trans(torch.ones((3, numFrames, height, width, 3), dtype=torch.uint8))
            trans(torch.ones((height, width, 3), dtype=torch.uint8))
            trans(torch.ones((width, 3), dtype=torch.uint8))
            trans(torch.ones((3), dtype=torch.uint8))

        trans.__repr__()

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip_video(self):
        random_state = random.getstate()
        random.seed(42)
        clip = torch.rand((3, 4, 112, 112), dtype=torch.float)
        hclip = clip.flip((-1))

        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlipVideo()(clip)
            if torch.all(torch.eq(out, hclip)):
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
159
        self.assertGreater(p_value, 0.0001)
Zhicheng Yan's avatar
Zhicheng Yan committed
160
161
162
163
164
165
166
167
168
169

        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlipVideo(p=0.7)(clip)
            if torch.all(torch.eq(out, hclip)):
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
170
        self.assertGreater(p_value, 0.0001)
Zhicheng Yan's avatar
Zhicheng Yan committed
171
172
173
174
175
176

        transforms.RandomHorizontalFlipVideo().__repr__()


if __name__ == '__main__':
    unittest.main()