test_transforms_video.py 6.41 KB
Newer Older
Zhicheng Yan's avatar
Zhicheng Yan committed
1
import torch
2
3
import torchvision.transforms._transforms_video as transforms
from torchvision.transforms import Compose
Zhicheng Yan's avatar
Zhicheng Yan committed
4
5
6
7
8
9
10
11
12
13
import unittest
import random
import numpy as np

try:
    from scipy import stats
except ImportError:
    stats = None


Francisco Massa's avatar
Francisco Massa committed
14
class TestVideoTransforms(unittest.TestCase):
Zhicheng Yan's avatar
Zhicheng Yan committed
15
16
17
18
19
20
21
22

    def test_random_crop_video(self):
        numFrames = random.randint(4, 128)
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2
        clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
23
        result = Compose([
Zhicheng Yan's avatar
Zhicheng Yan committed
24
25
26
            transforms.ToTensorVideo(),
            transforms.RandomCropVideo((oheight, owidth)),
        ])(clip)
27
28
        self.assertEqual(result.size(2), oheight)
        self.assertEqual(result.size(3), owidth)
Zhicheng Yan's avatar
Zhicheng Yan committed
29
30
31
32
33
34
35
36
37
38

        transforms.RandomCropVideo((oheight, owidth)).__repr__()

    def test_random_resized_crop_video(self):
        numFrames = random.randint(4, 128)
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2
        clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
39
        result = Compose([
Zhicheng Yan's avatar
Zhicheng Yan committed
40
41
42
            transforms.ToTensorVideo(),
            transforms.RandomResizedCropVideo((oheight, owidth)),
        ])(clip)
43
44
        self.assertEqual(result.size(2), oheight)
        self.assertEqual(result.size(3), owidth)
Zhicheng Yan's avatar
Zhicheng Yan committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

        transforms.RandomResizedCropVideo((oheight, owidth)).__repr__()

    def test_center_crop_video(self):
        numFrames = random.randint(4, 128)
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2

        clip = torch.ones((numFrames, height, width, 3), dtype=torch.uint8) * 255
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        clipNarrow = clip[:, oh1:oh1 + oheight, ow1:ow1 + owidth, :]
        clipNarrow.fill_(0)
60
        result = Compose([
Zhicheng Yan's avatar
Zhicheng Yan committed
61
62
63
64
65
66
67
68
69
70
            transforms.ToTensorVideo(),
            transforms.CenterCropVideo((oheight, owidth)),
        ])(clip)

        msg = "height: " + str(height) + " width: " \
            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
        self.assertEqual(result.sum().item(), 0, msg)

        oheight += 1
        owidth += 1
71
        result = Compose([
Zhicheng Yan's avatar
Zhicheng Yan committed
72
73
74
75
76
77
78
79
80
81
82
            transforms.ToTensorVideo(),
            transforms.CenterCropVideo((oheight, owidth)),
        ])(clip)
        sum1 = result.sum()

        msg = "height: " + str(height) + " width: " \
            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
        self.assertEqual(sum1.item() > 1, True, msg)

        oheight += 1
        owidth += 1
83
        result = Compose([
Zhicheng Yan's avatar
Zhicheng Yan committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
            transforms.ToTensorVideo(),
            transforms.CenterCropVideo((oheight, owidth)),
        ])(clip)
        sum2 = result.sum()

        msg = "height: " + str(height) + " width: " \
            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
        self.assertTrue(sum2.item() > 1, msg)
        self.assertTrue(sum2.item() > sum1.item(), msg)

    @unittest.skipIf(stats is None, 'scipy.stats is not available')
    def test_normalize_video(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            numFrames = random.randint(4, 128)
            height = random.randint(32, 256)
            width = random.randint(32, 256)
            mean = random.random()
            std = random.random()
            clip = torch.normal(mean, std, size=(channels, numFrames, height, width))
            mean = [clip[c].mean().item() for c in range(channels)]
            std = [clip[c].std().item() for c in range(channels)]
            normalized = transforms.NormalizeVideo(mean, std)(clip)
112
            self.assertTrue(samples_from_standard_normal(normalized))
Zhicheng Yan's avatar
Zhicheng Yan committed
113
114
115
116
117
        random.setstate(random_state)

        # Checking the optional in-place behaviour
        tensor = torch.rand((3, 128, 16, 16))
        tensor_inplace = transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)(tensor)
118
        self.assertTrue(torch.equal(tensor, tensor_inplace))
Zhicheng Yan's avatar
Zhicheng Yan committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

        transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True).__repr__()

    def test_to_tensor_video(self):
        numFrames, height, width = 64, 4, 4
        trans = transforms.ToTensorVideo()

        with self.assertRaises(TypeError):
            trans(np.random.rand(numFrames, height, width, 1).tolist())
            trans(torch.rand((numFrames, height, width, 1), dtype=torch.float))

        with self.assertRaises(ValueError):
            trans(torch.ones((3, numFrames, height, width, 3), dtype=torch.uint8))
            trans(torch.ones((height, width, 3), dtype=torch.uint8))
            trans(torch.ones((width, 3), dtype=torch.uint8))
            trans(torch.ones((3), dtype=torch.uint8))

        trans.__repr__()

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip_video(self):
        random_state = random.getstate()
        random.seed(42)
        clip = torch.rand((3, 4, 112, 112), dtype=torch.float)
        hclip = clip.flip((-1))

        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlipVideo()(clip)
            if torch.all(torch.eq(out, hclip)):
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
154
        self.assertGreater(p_value, 0.0001)
Zhicheng Yan's avatar
Zhicheng Yan committed
155
156
157
158
159
160
161
162
163
164

        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlipVideo(p=0.7)(clip)
            if torch.all(torch.eq(out, hclip)):
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
165
        self.assertGreater(p_value, 0.0001)
Zhicheng Yan's avatar
Zhicheng Yan committed
166
167
168
169
170
171

        transforms.RandomHorizontalFlipVideo().__repr__()


if __name__ == '__main__':
    unittest.main()