test_transforms_video.py 6.34 KB
Newer Older
Zhicheng Yan's avatar
Zhicheng Yan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from __future__ import division
import torch
import torchvision.transforms as transforms
import unittest
import random
import numpy as np

try:
    from scipy import stats
except ImportError:
    stats = None


class Tester(unittest.TestCase):

    def test_random_crop_video(self):
        numFrames = random.randint(4, 128)
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2
        clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
        result = transforms.Compose([
            transforms.ToTensorVideo(),
            transforms.RandomCropVideo((oheight, owidth)),
        ])(clip)
        assert result.size(2) == oheight
        assert result.size(3) == owidth

        transforms.RandomCropVideo((oheight, owidth)).__repr__()

    def test_random_resized_crop_video(self):
        numFrames = random.randint(4, 128)
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2
        clip = torch.randint(0, 256, (numFrames, height, width, 3), dtype=torch.uint8)
        result = transforms.Compose([
            transforms.ToTensorVideo(),
            transforms.RandomResizedCropVideo((oheight, owidth)),
        ])(clip)
        assert result.size(2) == oheight
        assert result.size(3) == owidth

        transforms.RandomResizedCropVideo((oheight, owidth)).__repr__()

    def test_center_crop_video(self):
        numFrames = random.randint(4, 128)
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2

        clip = torch.ones((numFrames, height, width, 3), dtype=torch.uint8) * 255
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        clipNarrow = clip[:, oh1:oh1 + oheight, ow1:ow1 + owidth, :]
        clipNarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToTensorVideo(),
            transforms.CenterCropVideo((oheight, owidth)),
        ])(clip)

        msg = "height: " + str(height) + " width: " \
            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
        self.assertEqual(result.sum().item(), 0, msg)

        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToTensorVideo(),
            transforms.CenterCropVideo((oheight, owidth)),
        ])(clip)
        sum1 = result.sum()

        msg = "height: " + str(height) + " width: " \
            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
        self.assertEqual(sum1.item() > 1, True, msg)

        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToTensorVideo(),
            transforms.CenterCropVideo((oheight, owidth)),
        ])(clip)
        sum2 = result.sum()

        msg = "height: " + str(height) + " width: " \
            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
        self.assertTrue(sum2.item() > 1, msg)
        self.assertTrue(sum2.item() > sum1.item(), msg)

    @unittest.skipIf(stats is None, 'scipy.stats is not available')
    def test_normalize_video(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            numFrames = random.randint(4, 128)
            height = random.randint(32, 256)
            width = random.randint(32, 256)
            mean = random.random()
            std = random.random()
            clip = torch.normal(mean, std, size=(channels, numFrames, height, width))
            mean = [clip[c].mean().item() for c in range(channels)]
            std = [clip[c].std().item() for c in range(channels)]
            normalized = transforms.NormalizeVideo(mean, std)(clip)
            assert samples_from_standard_normal(normalized)
        random.setstate(random_state)

        # Checking the optional in-place behaviour
        tensor = torch.rand((3, 128, 16, 16))
        tensor_inplace = transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)(tensor)
        assert torch.equal(tensor, tensor_inplace)

        transforms.NormalizeVideo((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True).__repr__()

    def test_to_tensor_video(self):
        numFrames, height, width = 64, 4, 4
        trans = transforms.ToTensorVideo()

        with self.assertRaises(TypeError):
            trans(np.random.rand(numFrames, height, width, 1).tolist())
            trans(torch.rand((numFrames, height, width, 1), dtype=torch.float))

        with self.assertRaises(ValueError):
            trans(torch.ones((3, numFrames, height, width, 3), dtype=torch.uint8))
            trans(torch.ones((height, width, 3), dtype=torch.uint8))
            trans(torch.ones((width, 3), dtype=torch.uint8))
            trans(torch.ones((3), dtype=torch.uint8))

        trans.__repr__()

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip_video(self):
        random_state = random.getstate()
        random.seed(42)
        clip = torch.rand((3, 4, 112, 112), dtype=torch.float)
        hclip = clip.flip((-1))

        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlipVideo()(clip)
            if torch.all(torch.eq(out, hclip)):
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001

        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlipVideo(p=0.7)(clip)
            if torch.all(torch.eq(out, hclip)):
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
        assert p_value > 0.0001

        transforms.RandomHorizontalFlipVideo().__repr__()


if __name__ == '__main__':
    unittest.main()