"src/diffusers/schedulers/scheduling_ddim_inverse.py" did not exist on "726aba089d12503249d824bbaf4070f47d0fe44d"
test_transforms_v2_consistency.py 33.6 KB
Newer Older
1
2
import importlib.machinery
import importlib.util
3
import inspect
4
import random
5
import re
6
from pathlib import Path
7

8
import numpy as np
9
import PIL.Image
10
import pytest
11
12

import torch
13
import torchvision.transforms.v2 as v2_transforms
14
from common_utils import assert_close, assert_equal, set_rng_seed
15
from torch import nn
16
from torchvision import transforms as legacy_transforms, tv_tensors
17
from torchvision._utils import sequence_to_str
18

19
from torchvision.transforms import functional as legacy_F
20
from torchvision.transforms.v2 import functional as prototype_F
Nicolas Hug's avatar
Nicolas Hug committed
21
from torchvision.transforms.v2._utils import _get_fill, query_size
22
from torchvision.transforms.v2.functional import to_pil_image
23
24
25
26
27
28
29
30
from transforms_v2_legacy_utils import (
    ArgsKwargs,
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
    make_segmentation_mask,
)
31

32
DEFAULT_MAKE_IMAGES_KWARGS = dict(color_spaces=["RGB"], extra_dims=[(4,)])
33
34


Nicolas Hug's avatar
Nicolas Hug committed
35
36
37
38
39
40
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


41
42
43
44
45
46
47
48
49
class NotScriptableArgsKwargs(ArgsKwargs):
    """
    This class is used to mark parameters that render the transform non-scriptable. They still work in eager mode and
    thus will be tested there, but will be skipped by the JIT tests.
    """

    pass


50
51
class ConsistencyConfig:
    def __init__(
52
53
54
        self,
        prototype_cls,
        legacy_cls,
55
56
        # If no args_kwargs is passed, only the signature will be checked
        args_kwargs=(),
57
58
59
        make_images_kwargs=None,
        supports_pil=True,
        removed_params=(),
60
        closeness_kwargs=None,
61
62
63
    ):
        self.prototype_cls = prototype_cls
        self.legacy_cls = legacy_cls
64
        self.args_kwargs = args_kwargs
65
66
        self.make_images_kwargs = make_images_kwargs or DEFAULT_MAKE_IMAGES_KWARGS
        self.supports_pil = supports_pil
67
        self.removed_params = removed_params
68
        self.closeness_kwargs = closeness_kwargs or dict(rtol=0, atol=0)
69
70


71
72
73
74
# These are here since both the prototype and legacy transform need to be constructed with the same random parameters
LINEAR_TRANSFORMATION_MEAN = torch.rand(36)
LINEAR_TRANSFORMATION_MATRIX = torch.rand([LINEAR_TRANSFORMATION_MEAN.numel()] * 2)

75
76
CONSISTENCY_CONFIGS = [
    ConsistencyConfig(
77
        v2_transforms.Normalize,
78
79
80
81
82
83
84
        legacy_transforms.Normalize,
        [
            ArgsKwargs(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ],
        supports_pil=False,
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.float]),
    ),
85
    ConsistencyConfig(
86
        v2_transforms.FiveCrop,
87
88
89
90
91
92
93
94
        legacy_transforms.FiveCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
95
        v2_transforms.TenCrop,
96
97
98
99
        legacy_transforms.TenCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
100
            ArgsKwargs(18, vertical_flip=True),
101
102
103
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
104
105
    *[
        ConsistencyConfig(
106
            v2_transforms.LinearTransformation,
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
            legacy_transforms.LinearTransformation,
            [
                ArgsKwargs(LINEAR_TRANSFORMATION_MATRIX.to(matrix_dtype), LINEAR_TRANSFORMATION_MEAN.to(matrix_dtype)),
            ],
            # Make sure that the product of the height, width and number of channels matches the number of elements in
            # `LINEAR_TRANSFORMATION_MEAN`. For example 2 * 6 * 3 == 4 * 3 * 3 == 36.
            make_images_kwargs=dict(
                DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(2, 6), (4, 3)], color_spaces=["RGB"], dtypes=[image_dtype]
            ),
            supports_pil=False,
        )
        for matrix_dtype, image_dtype in [
            (torch.float32, torch.float32),
            (torch.float64, torch.float64),
            (torch.float32, torch.uint8),
            (torch.float64, torch.float32),
            (torch.float32, torch.float64),
        ]
    ],
126
    ConsistencyConfig(
127
        v2_transforms.Grayscale,
128
129
130
131
132
        legacy_transforms.Grayscale,
        [
            ArgsKwargs(num_output_channels=1),
            ArgsKwargs(num_output_channels=3),
        ],
133
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
134
135
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
136
    ),
137
    ConsistencyConfig(
138
        v2_transforms.ToPILImage,
139
        legacy_transforms.ToPILImage,
140
        [NotScriptableArgsKwargs()],
141
142
        make_images_kwargs=dict(
            color_spaces=[
143
144
145
146
                "GRAY",
                "GRAY_ALPHA",
                "RGB",
                "RGBA",
147
148
149
150
151
152
            ],
            extra_dims=[()],
        ),
        supports_pil=False,
    ),
    ConsistencyConfig(
153
        v2_transforms.Lambda,
154
155
        legacy_transforms.Lambda,
        [
156
            NotScriptableArgsKwargs(lambda image: image / 2),
157
158
159
160
161
        ],
        # Technically, this also supports PIL, but it is overkill to write a function here that supports tensor and PIL
        # images given that the transform does nothing but call it anyway.
        supports_pil=False,
    ),
162
    ConsistencyConfig(
163
        v2_transforms.RandomEqualize,
164
165
166
167
168
169
170
171
        legacy_transforms.RandomEqualize,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
172
        v2_transforms.RandomInvert,
173
174
175
176
177
178
179
        legacy_transforms.RandomInvert,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
180
        v2_transforms.RandomPosterize,
181
182
183
184
185
186
187
188
189
        legacy_transforms.RandomPosterize,
        [
            ArgsKwargs(p=0, bits=5),
            ArgsKwargs(p=1, bits=1),
            ArgsKwargs(p=1, bits=3),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
190
        v2_transforms.RandomSolarize,
191
192
193
194
195
196
197
        legacy_transforms.RandomSolarize,
        [
            ArgsKwargs(p=0, threshold=0.5),
            ArgsKwargs(p=1, threshold=0.3),
            ArgsKwargs(p=1, threshold=0.99),
        ],
    ),
198
199
    *[
        ConsistencyConfig(
200
            v2_transforms.RandomAutocontrast,
201
202
203
204
205
206
207
208
209
210
            legacy_transforms.RandomAutocontrast,
            [
                ArgsKwargs(p=0),
                ArgsKwargs(p=1),
            ],
            make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[dt]),
            closeness_kwargs=ckw,
        )
        for dt, ckw in [(torch.uint8, dict(atol=1, rtol=0)), (torch.float32, dict(rtol=None, atol=None))]
    ],
211
    ConsistencyConfig(
212
        v2_transforms.RandomAdjustSharpness,
213
214
215
        legacy_transforms.RandomAdjustSharpness,
        [
            ArgsKwargs(p=0, sharpness_factor=0.5),
216
            ArgsKwargs(p=1, sharpness_factor=0.2),
217
218
            ArgsKwargs(p=1, sharpness_factor=0.99),
        ],
219
        closeness_kwargs={"atol": 1e-6, "rtol": 1e-6},
220
221
    ),
    ConsistencyConfig(
222
        v2_transforms.RandomGrayscale,
223
224
225
226
227
        legacy_transforms.RandomGrayscale,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
228
229
230
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
231
232
    ),
    ConsistencyConfig(
233
        v2_transforms.ColorJitter,
234
235
236
237
238
239
240
241
242
243
244
        legacy_transforms.ColorJitter,
        [
            ArgsKwargs(),
            ArgsKwargs(brightness=0.1),
            ArgsKwargs(brightness=(0.2, 0.3)),
            ArgsKwargs(contrast=0.4),
            ArgsKwargs(contrast=(0.5, 0.6)),
            ArgsKwargs(saturation=0.7),
            ArgsKwargs(saturation=(0.8, 0.9)),
            ArgsKwargs(hue=0.3),
            ArgsKwargs(hue=(-0.1, 0.2)),
245
            ArgsKwargs(brightness=0.1, contrast=0.4, saturation=0.5, hue=0.3),
246
        ],
247
        closeness_kwargs={"atol": 1e-5, "rtol": 1e-5},
248
249
    ),
    ConsistencyConfig(
250
        v2_transforms.RandomPerspective,
251
252
253
254
255
        legacy_transforms.RandomPerspective,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, distortion_scale=0.3),
256
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=v2_transforms.InterpolationMode.NEAREST),
257
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=PIL.Image.NEAREST),
258
259
260
            ArgsKwargs(p=1, distortion_scale=0.1, fill=1),
            ArgsKwargs(p=1, distortion_scale=0.4, fill=(1, 2, 3)),
        ],
261
        closeness_kwargs={"atol": None, "rtol": None},
262
    ),
263
    ConsistencyConfig(
264
        v2_transforms.PILToTensor,
265
266
267
        legacy_transforms.PILToTensor,
    ),
    ConsistencyConfig(
268
        v2_transforms.ToTensor,
269
270
271
        legacy_transforms.ToTensor,
    ),
    ConsistencyConfig(
272
        v2_transforms.Compose,
273
274
275
        legacy_transforms.Compose,
    ),
    ConsistencyConfig(
276
        v2_transforms.RandomApply,
277
278
279
        legacy_transforms.RandomApply,
    ),
    ConsistencyConfig(
280
        v2_transforms.RandomChoice,
281
282
283
        legacy_transforms.RandomChoice,
    ),
    ConsistencyConfig(
284
        v2_transforms.RandomOrder,
285
286
287
        legacy_transforms.RandomOrder,
    ),
    ConsistencyConfig(
288
        v2_transforms.AugMix,
289
290
291
        legacy_transforms.AugMix,
    ),
    ConsistencyConfig(
292
        v2_transforms.AutoAugment,
293
294
295
        legacy_transforms.AutoAugment,
    ),
    ConsistencyConfig(
296
        v2_transforms.RandAugment,
297
298
299
        legacy_transforms.RandAugment,
    ),
    ConsistencyConfig(
300
        v2_transforms.TrivialAugmentWide,
301
302
        legacy_transforms.TrivialAugmentWide,
    ),
303
304
305
]


306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
@pytest.mark.parametrize("config", CONSISTENCY_CONFIGS, ids=lambda config: config.legacy_cls.__name__)
def test_signature_consistency(config):
    legacy_params = dict(inspect.signature(config.legacy_cls).parameters)
    prototype_params = dict(inspect.signature(config.prototype_cls).parameters)

    for param in config.removed_params:
        legacy_params.pop(param, None)

    missing = legacy_params.keys() - prototype_params.keys()
    if missing:
        raise AssertionError(
            f"The prototype transform does not support the parameters "
            f"{sequence_to_str(sorted(missing), separate_last='and ')}, but the legacy transform does. "
            f"If that is intentional, e.g. pending deprecation, please add the parameters to the `removed_params` on "
            f"the `ConsistencyConfig`."
        )

    extra = prototype_params.keys() - legacy_params.keys()
324
325
326
327
328
329
    extra_without_default = {
        param
        for param in extra
        if prototype_params[param].default is inspect.Parameter.empty
        and prototype_params[param].kind not in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}
    }
330
331
    if extra_without_default:
        raise AssertionError(
332
333
334
            f"The prototype transform requires the parameters "
            f"{sequence_to_str(sorted(extra_without_default), separate_last='and ')}, but the legacy transform does "
            f"not. Please add a default value."
335
336
        )

337
338
339
340
341
342
    legacy_signature = list(legacy_params.keys())
    # Since we made sure that we don't have any extra parameters without default above, we clamp the prototype signature
    # to the same number of parameters as the legacy one
    prototype_signature = list(prototype_params.keys())[: len(legacy_signature)]

    assert prototype_signature == legacy_signature
343
344


345
346
347
def check_call_consistency(
    prototype_transform, legacy_transform, images=None, supports_pil=True, closeness_kwargs=None
):
348
349
    if images is None:
        images = make_images(**DEFAULT_MAKE_IMAGES_KWARGS)
350

351
352
    closeness_kwargs = closeness_kwargs or dict()

353
354
    for image in images:
        image_repr = f"[{tuple(image.shape)}, {str(image.dtype).rsplit('.')[-1]}]"
355
356
357

        image_tensor = torch.Tensor(image)
        try:
358
            torch.manual_seed(0)
359
            output_legacy_tensor = legacy_transform(image_tensor)
360
361
        except Exception as exc:
            raise pytest.UsageError(
362
                f"Transforming a tensor image {image_repr} failed in the legacy transform with the "
363
                f"error above. This means that you need to specify the parameters passed to `make_images` through the "
364
365
366
367
                "`make_images_kwargs` of the `ConsistencyConfig`."
            ) from exc

        try:
368
            torch.manual_seed(0)
369
            output_prototype_tensor = prototype_transform(image_tensor)
370
371
        except Exception as exc:
            raise AssertionError(
372
                f"Transforming a tensor image with shape {image_repr} failed in the prototype transform with "
373
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
374
                f"`is_pure_tensor` path in `_transform`."
375
376
            ) from exc

377
        assert_close(
378
379
380
            output_prototype_tensor,
            output_legacy_tensor,
            msg=lambda msg: f"Tensor image consistency check failed with: \n\n{msg}",
381
            **closeness_kwargs,
382
383
384
        )

        try:
385
            torch.manual_seed(0)
386
            output_prototype_image = prototype_transform(image)
387
388
        except Exception as exc:
            raise AssertionError(
389
                f"Transforming a image tv_tensor with shape {image_repr} failed in the prototype transform with "
390
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
391
                f"`tv_tensors.Image` path in `_transform`."
392
393
            ) from exc

394
        assert_close(
395
            output_prototype_image,
396
            output_prototype_tensor,
397
            msg=lambda msg: f"Output for tv_tensor and tensor images is not equal: \n\n{msg}",
398
            **closeness_kwargs,
399
400
        )

401
        if image.ndim == 3 and supports_pil:
402
            image_pil = to_pil_image(image)
403

404
            try:
405
                torch.manual_seed(0)
406
                output_legacy_pil = legacy_transform(image_pil)
407
408
            except Exception as exc:
                raise pytest.UsageError(
409
                    f"Transforming a PIL image with shape {image_repr} failed in the legacy transform with the "
410
411
412
413
414
                    f"error above. If this transform does not support PIL images, set `supports_pil=False` on the "
                    "`ConsistencyConfig`. "
                ) from exc

            try:
415
                torch.manual_seed(0)
416
                output_prototype_pil = prototype_transform(image_pil)
417
418
            except Exception as exc:
                raise AssertionError(
419
                    f"Transforming a PIL image with shape {image_repr} failed in the prototype transform with "
420
421
422
423
                    f"the error above. This means there is a consistency bug either in `_get_params` or in the "
                    f"`PIL.Image.Image` path in `_transform`."
                ) from exc

424
            assert_close(
425
426
                output_prototype_pil,
                output_legacy_pil,
427
                msg=lambda msg: f"PIL image consistency check failed with: \n\n{msg}",
428
                **closeness_kwargs,
429
            )
430
431


432
@pytest.mark.parametrize(
433
434
    ("config", "args_kwargs"),
    [
435
436
437
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
438
        for config in CONSISTENCY_CONFIGS
439
        for idx, args_kwargs in enumerate(config.args_kwargs)
440
    ],
441
)
442
@pytest.mark.filterwarnings("ignore")
443
def test_call_consistency(config, args_kwargs):
444
445
446
    args, kwargs = args_kwargs

    try:
447
        legacy_transform = config.legacy_cls(*args, **kwargs)
448
449
450
451
452
453
454
    except Exception as exc:
        raise pytest.UsageError(
            f"Initializing the legacy transform failed with the error above. "
            f"Please correct the `ArgsKwargs({args_kwargs})` in the `ConsistencyConfig`."
        ) from exc

    try:
455
        prototype_transform = config.prototype_cls(*args, **kwargs)
456
457
458
459
460
461
    except Exception as exc:
        raise AssertionError(
            "Initializing the prototype transform failed with the error above. "
            "This means there is a consistency bug in the constructor."
        ) from exc

462
463
464
465
466
    check_call_consistency(
        prototype_transform,
        legacy_transform,
        images=make_images(**config.make_images_kwargs),
        supports_pil=config.supports_pil,
467
        closeness_kwargs=config.closeness_kwargs,
468
469
470
    )


471
472
473
474
475
476
477
478
479
get_params_parametrization = pytest.mark.parametrize(
    ("config", "get_params_args_kwargs"),
    [
        pytest.param(
            next(config for config in CONSISTENCY_CONFIGS if config.prototype_cls is transform_cls),
            get_params_args_kwargs,
            id=transform_cls.__name__,
        )
        for transform_cls, get_params_args_kwargs in [
480
481
482
            (v2_transforms.ColorJitter, ArgsKwargs(brightness=None, contrast=None, saturation=None, hue=None)),
            (v2_transforms.RandomPerspective, ArgsKwargs(23, 17, 0.5)),
            (v2_transforms.AutoAugment, ArgsKwargs(5)),
483
484
        ]
    ],
485
)
486
487


488
@get_params_parametrization
489
def test_get_params_alias(config, get_params_args_kwargs):
490
491
    assert config.prototype_cls.get_params is config.legacy_cls.get_params

492
493
494
495
496
    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    legacy_transform = config.legacy_cls(*args, **kwargs)
    prototype_transform = config.prototype_cls(*args, **kwargs)
497

498
499
500
    assert prototype_transform.get_params is legacy_transform.get_params


501
@get_params_parametrization
502
503
504
505
506
507
508
509
510
def test_get_params_jit(config, get_params_args_kwargs):
    get_params_args, get_params_kwargs = get_params_args_kwargs

    torch.jit.script(config.prototype_cls.get_params)(*get_params_args, **get_params_kwargs)

    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    transform = config.prototype_cls(*args, **kwargs)
511

512
    torch.jit.script(transform.get_params)(*get_params_args, **get_params_kwargs)
513
514


515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
@pytest.mark.parametrize(
    ("config", "args_kwargs"),
    [
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
        for config in CONSISTENCY_CONFIGS
        for idx, args_kwargs in enumerate(config.args_kwargs)
        if not isinstance(args_kwargs, NotScriptableArgsKwargs)
    ],
)
def test_jit_consistency(config, args_kwargs):
    args, kwargs = args_kwargs

    prototype_transform_eager = config.prototype_cls(*args, **kwargs)
    legacy_transform_eager = config.legacy_cls(*args, **kwargs)

    legacy_transform_scripted = torch.jit.script(legacy_transform_eager)
    prototype_transform_scripted = torch.jit.script(prototype_transform_eager)

    for image in make_images(**config.make_images_kwargs):
        image = image.as_subclass(torch.Tensor)

        torch.manual_seed(0)
        output_legacy_scripted = legacy_transform_scripted(image)

        torch.manual_seed(0)
        output_prototype_scripted = prototype_transform_scripted(image)

        assert_close(output_prototype_scripted, output_legacy_scripted, **config.closeness_kwargs)


547
548
549
550
551
552
553
554
555
556
class TestContainerTransforms:
    """
    Since we are testing containers here, we also need some transforms to wrap. Thus, testing a container transform for
    consistency automatically tests the wrapped transforms consistency.

    Instead of complicated mocking or creating custom transforms just for these tests, here we use deterministic ones
    that were already tested for consistency above.
    """

    def test_compose(self):
557
        prototype_transform = v2_transforms.Compose(
558
            [
559
560
                v2_transforms.Resize(256),
                v2_transforms.CenterCrop(224),
561
562
563
564
565
566
567
568
569
            ]
        )
        legacy_transform = legacy_transforms.Compose(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ]
        )

570
571
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
572
573

    @pytest.mark.parametrize("p", [0, 0.1, 0.5, 0.9, 1])
574
575
    @pytest.mark.parametrize("sequence_type", [list, nn.ModuleList])
    def test_random_apply(self, p, sequence_type):
576
        prototype_transform = v2_transforms.RandomApply(
577
578
            sequence_type(
                [
579
580
                    v2_transforms.Resize(256),
                    v2_transforms.CenterCrop(224),
581
582
                ]
            ),
583
584
585
            p=p,
        )
        legacy_transform = legacy_transforms.RandomApply(
586
587
588
589
590
591
            sequence_type(
                [
                    legacy_transforms.Resize(256),
                    legacy_transforms.CenterCrop(224),
                ]
            ),
592
593
594
            p=p,
        )

595
596
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
597

598
599
600
601
602
        if sequence_type is nn.ModuleList:
            # quick and dirty test that it is jit-scriptable
            scripted = torch.jit.script(prototype_transform)
            scripted(torch.rand(1, 3, 300, 300))

603
    # We can't test other values for `p` since the random parameter generation is different
604
605
    @pytest.mark.parametrize("probabilities", [(0, 1), (1, 0)])
    def test_random_choice(self, probabilities):
606
        prototype_transform = v2_transforms.RandomChoice(
607
            [
608
                v2_transforms.Resize(256),
609
610
                legacy_transforms.CenterCrop(224),
            ],
611
            p=probabilities,
612
613
614
615
616
617
        )
        legacy_transform = legacy_transforms.RandomChoice(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ],
618
            p=probabilities,
619
620
        )

621
622
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
623
624


625
626
class TestToTensorTransforms:
    def test_pil_to_tensor(self):
627
        prototype_transform = v2_transforms.PILToTensor()
628
629
        legacy_transform = legacy_transforms.PILToTensor()

630
        for image in make_images(extra_dims=[()]):
631
            image_pil = to_pil_image(image)
632
633
634
635

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))

    def test_to_tensor(self):
636
        with pytest.warns(UserWarning, match=re.escape("The transform `ToTensor()` is deprecated")):
637
            prototype_transform = v2_transforms.ToTensor()
638
639
        legacy_transform = legacy_transforms.ToTensor()

640
        for image in make_images(extra_dims=[()]):
641
            image_pil = to_pil_image(image)
642
643
644
645
            image_numpy = np.array(image_pil)

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))
            assert_equal(prototype_transform(image_numpy), legacy_transform(image_numpy))
646
647


648
def import_transforms_from_references(reference):
649
650
651
652
653
654
655
656
657
658
    HERE = Path(__file__).parent
    PROJECT_ROOT = HERE.parent

    loader = importlib.machinery.SourceFileLoader(
        "transforms", str(PROJECT_ROOT / "references" / reference / "transforms.py")
    )
    spec = importlib.util.spec_from_loader("transforms", loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
    return module
659
660
661


det_transforms = import_transforms_from_references("detection")
662
663
664


class TestRefDetTransforms:
665
    def make_tv_tensors(self, with_mask=True):
666
667
668
        size = (600, 800)
        num_objects = 22

669
670
671
        def make_label(extra_dims, categories):
            return torch.randint(categories, extra_dims, dtype=torch.int64)

672
        pil_image = to_pil_image(make_image(size=size, color_space="RGB"))
673
        target = {
674
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
675
676
677
678
679
680
681
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (pil_image, target)

682
        tensor_image = torch.Tensor(make_image(size=size, color_space="RGB", dtype=torch.float32))
683
        target = {
684
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
685
686
687
688
689
690
691
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (tensor_image, target)

692
        tv_tensor_image = make_image(size=size, color_space="RGB", dtype=torch.float32)
693
        target = {
694
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
695
696
697
698
699
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

700
        yield (tv_tensor_image, target)
701
702
703
704

    @pytest.mark.parametrize(
        "t_ref, t, data_kwargs",
        [
705
            (det_transforms.RandomHorizontalFlip(p=1.0), v2_transforms.RandomHorizontalFlip(p=1.0), {}),
706
707
708
709
710
            (
                det_transforms.RandomIoUCrop(),
                v2_transforms.Compose(
                    [
                        v2_transforms.RandomIoUCrop(),
711
                        v2_transforms.SanitizeBoundingBoxes(labels_getter=lambda sample: sample[1]["labels"]),
712
713
714
715
                    ]
                ),
                {"with_mask": False},
            ),
716
            (det_transforms.RandomZoomOut(), v2_transforms.RandomZoomOut(), {"with_mask": False}),
717
            (det_transforms.ScaleJitter((1024, 1024)), v2_transforms.ScaleJitter((1024, 1024), antialias=True), {}),
718
719
720
721
            (
                det_transforms.RandomShortestSize(
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
722
                v2_transforms.RandomShortestSize(
723
724
725
726
727
728
729
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
                {},
            ),
        ],
    )
    def test_transform(self, t_ref, t, data_kwargs):
730
        for dp in self.make_tv_tensors(**data_kwargs):
731
732
733
734
735
736
737
738
739

            # We should use prototype transform first as reference transform performs inplace target update
            torch.manual_seed(12)
            output = t(dp)

            torch.manual_seed(12)
            expected_output = t_ref(*dp)

            assert_equal(expected_output, output)
740
741
742
743
744
745
746
747
748


seg_transforms = import_transforms_from_references("segmentation")


# We need this transform for two reasons:
# 1. transforms.RandomCrop uses a different scheme to pad images and masks of insufficient size than its name
#    counterpart in the detection references. Thus, we cannot use it with `pad_if_needed=True`
# 2. transforms.Pad only supports a fixed padding, but the segmentation datasets don't have a fixed image size.
749
class PadIfSmaller(v2_transforms.Transform):
750
751
752
    def __init__(self, size, fill=0):
        super().__init__()
        self.size = size
753
        self.fill = v2_transforms._geometry._setup_fill_arg(fill)
754
755

    def _get_params(self, sample):
Philip Meier's avatar
Philip Meier committed
756
        height, width = query_size(sample)
757
758
759
760
761
762
763
764
        padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)]
        needs_padding = any(padding)
        return dict(padding=padding, needs_padding=needs_padding)

    def _transform(self, inpt, params):
        if not params["needs_padding"]:
            return inpt

765
        fill = _get_fill(self.fill, type(inpt))
766
        return prototype_F.pad(inpt, padding=params["padding"], fill=fill)
767
768
769


class TestRefSegTransforms:
770
    def make_tv_tensors(self, supports_pil=True, image_dtype=torch.uint8):
771
        size = (256, 460)
772
773
774
775
        num_categories = 21

        conv_fns = []
        if supports_pil:
776
            conv_fns.append(to_pil_image)
777
778
779
        conv_fns.extend([torch.Tensor, lambda x: x])

        for conv_fn in conv_fns:
780
781
            tv_tensor_image = make_image(size=size, color_space="RGB", dtype=image_dtype)
            tv_tensor_mask = make_segmentation_mask(size=size, num_categories=num_categories, dtype=torch.uint8)
782

783
            dp = (conv_fn(tv_tensor_image), tv_tensor_mask)
784
            dp_ref = (
785
786
                to_pil_image(tv_tensor_image) if supports_pil else tv_tensor_image.as_subclass(torch.Tensor),
                to_pil_image(tv_tensor_mask),
787
788
789
790
791
792
793
794
795
            )

            yield dp, dp_ref

    def set_seed(self, seed=12):
        torch.manual_seed(seed)
        random.seed(seed)

    def check(self, t, t_ref, data_kwargs=None):
796
        for dp, dp_ref in self.make_tv_tensors(**data_kwargs or dict()):
797
798

            self.set_seed()
799
            actual = actual_image, actual_mask = t(dp)
800
801

            self.set_seed()
802
803
804
805
806
            expected_image, expected_mask = t_ref(*dp_ref)
            if isinstance(actual_image, torch.Tensor) and not isinstance(expected_image, torch.Tensor):
                expected_image = legacy_F.pil_to_tensor(expected_image)
            expected_mask = legacy_F.pil_to_tensor(expected_mask).squeeze(0)
            expected = (expected_image, expected_mask)
807

808
            assert_equal(actual, expected)
809
810
811
812
813
814

    @pytest.mark.parametrize(
        ("t_ref", "t", "data_kwargs"),
        [
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=1.0),
815
                v2_transforms.RandomHorizontalFlip(p=1.0),
816
817
818
819
                dict(),
            ),
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=0.0),
820
                v2_transforms.RandomHorizontalFlip(p=0.0),
821
822
823
824
                dict(),
            ),
            (
                seg_transforms.RandomCrop(size=480),
825
                v2_transforms.Compose(
826
                    [
827
                        PadIfSmaller(size=480, fill={tv_tensors.Mask: 255, "others": 0}),
828
                        v2_transforms.RandomCrop(size=480),
829
830
831
832
833
834
                    ]
                ),
                dict(),
            ),
            (
                seg_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
835
                v2_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
836
837
838
839
840
841
842
                dict(supports_pil=False, image_dtype=torch.float),
            ),
        ],
    )
    def test_common(self, t_ref, t, data_kwargs):
        self.check(t, t_ref, data_kwargs)

843
844
845
846
847
848
849
850
851
852
853
854

@pytest.mark.parametrize(
    ("legacy_dispatcher", "name_only_params"),
    [
        (legacy_F.get_dimensions, {}),
        (legacy_F.get_image_size, {}),
        (legacy_F.get_image_num_channels, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.pil_to_tensor, {}),
        (legacy_F.convert_image_dtype, {}),
        (legacy_F.to_pil_image, {}),
        (legacy_F.normalize, {}),
855
        (legacy_F.resize, {"interpolation"}),
856
857
858
        (legacy_F.pad, {"padding", "fill"}),
        (legacy_F.crop, {}),
        (legacy_F.center_crop, {}),
859
        (legacy_F.resized_crop, {"interpolation"}),
860
        (legacy_F.hflip, {}),
861
        (legacy_F.perspective, {"startpoints", "endpoints", "fill", "interpolation"}),
862
863
864
865
866
867
868
869
        (legacy_F.vflip, {}),
        (legacy_F.five_crop, {}),
        (legacy_F.ten_crop, {}),
        (legacy_F.adjust_brightness, {}),
        (legacy_F.adjust_contrast, {}),
        (legacy_F.adjust_saturation, {}),
        (legacy_F.adjust_hue, {}),
        (legacy_F.adjust_gamma, {}),
870
871
        (legacy_F.rotate, {"center", "fill", "interpolation"}),
        (legacy_F.affine, {"angle", "translate", "center", "fill", "interpolation"}),
872
873
874
875
876
877
878
879
880
881
882
        (legacy_F.to_grayscale, {}),
        (legacy_F.rgb_to_grayscale, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.erase, {}),
        (legacy_F.gaussian_blur, {}),
        (legacy_F.invert, {}),
        (legacy_F.posterize, {}),
        (legacy_F.solarize, {}),
        (legacy_F.adjust_sharpness, {}),
        (legacy_F.autocontrast, {}),
        (legacy_F.equalize, {}),
883
        (legacy_F.elastic_transform, {"fill", "interpolation"}),
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
    ],
)
def test_dispatcher_signature_consistency(legacy_dispatcher, name_only_params):
    legacy_signature = inspect.signature(legacy_dispatcher)
    legacy_params = list(legacy_signature.parameters.values())[1:]

    try:
        prototype_dispatcher = getattr(prototype_F, legacy_dispatcher.__name__)
    except AttributeError:
        raise AssertionError(
            f"Legacy dispatcher `F.{legacy_dispatcher.__name__}` has no prototype equivalent"
        ) from None

    prototype_signature = inspect.signature(prototype_dispatcher)
    prototype_params = list(prototype_signature.parameters.values())[1:]

    # Some dispatchers got extra parameters. This makes sure they have a default argument and thus are BC. We don't
    # need to check if parameters were added in the middle rather than at the end, since that will be caught by the
    # regular check below.
    prototype_params, new_prototype_params = (
        prototype_params[: len(legacy_params)],
        prototype_params[len(legacy_params) :],
    )
    for param in new_prototype_params:
        assert param.default is not param.empty

    # Some annotations were changed mostly to supersets of what was there before. Plus, some legacy dispatchers had no
    # annotations. In these cases we simply drop the annotation and default argument from the comparison
    for prototype_param, legacy_param in zip(prototype_params, legacy_params):
        if legacy_param.name in name_only_params:
            prototype_param._annotation = prototype_param._default = inspect.Parameter.empty
            legacy_param._annotation = legacy_param._default = inspect.Parameter.empty
        elif legacy_param.annotation is inspect.Parameter.empty:
            prototype_param._annotation = inspect.Parameter.empty

    assert prototype_params == legacy_params