cifar.py 7.75 KB
Newer Older
Soumith Chintala's avatar
Soumith Chintala committed
1
2
3
4
5
6
7
8
9
10
11
from __future__ import print_function
from PIL import Image
import os
import os.path
import numpy as np
import sys
if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle

soumith's avatar
soumith committed
12
import torch.utils.data as data
soumith's avatar
soumith committed
13
from .utils import download_url, check_integrity
14

15

Soumith Chintala's avatar
Soumith Chintala committed
16
class CIFAR10(data.Dataset):
17
18
19
20
    """`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
21
            ``cifar-10-batches-py`` exists or will be saved to if download is set to True.
22
23
24
25
26
27
28
29
30
31
32
        train (bool, optional): If True, creates dataset from training set, otherwise
            creates from test set.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
Soumith Chintala's avatar
Soumith Chintala committed
33
    base_folder = 'cifar-10-batches-py'
Tzu-Wei Huang's avatar
Tzu-Wei Huang committed
34
    url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
Soumith Chintala's avatar
Soumith Chintala committed
35
    filename = "cifar-10-python.tar.gz"
zhoumingjun's avatar
zhoumingjun committed
36
    tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
Soumith Chintala's avatar
Soumith Chintala committed
37
    train_list = [
38
39
40
41
42
        ['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
        ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
        ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
        ['data_batch_4', '634d18415352ddfa80567beed471001a'],
        ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
Soumith Chintala's avatar
Soumith Chintala committed
43
44
45
    ]

    test_list = [
46
        ['test_batch', '40351d587109b95175f43aff81a1287e'],
Soumith Chintala's avatar
Soumith Chintala committed
47
    ]
48
49
50
51
52
53
54
55
56
57
58
59
    meta = {
        'filename': 'batches.meta',
        'key': 'label_names',
        'md5': '5ff9c542aee3614f3951f8cda6e48888',
    }

    @property
    def targets(self):
        if self.train:
            return self.train_labels
        else:
            return self.test_labels
Soumith Chintala's avatar
Soumith Chintala committed
60

61
62
63
    def __init__(self, root, train=True,
                 transform=None, target_transform=None,
                 download=False):
64
        self.root = os.path.expanduser(root)
Soumith Chintala's avatar
Soumith Chintala committed
65
66
        self.transform = transform
        self.target_transform = target_transform
67
68
        self.train = train  # training set or test set

Soumith Chintala's avatar
Soumith Chintala committed
69
70
71
72
        if download:
            self.download()

        if not self._check_integrity():
73
74
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')
75

Soumith Chintala's avatar
Soumith Chintala committed
76
        # now load the picked numpy arrays
77
78
79
80
81
        if self.train:
            self.train_data = []
            self.train_labels = []
            for fentry in self.train_list:
                f = fentry[0]
moskomule's avatar
moskomule committed
82
                file = os.path.join(self.root, self.base_folder, f)
83
                fo = open(file, 'rb')
Adam Lerer's avatar
Adam Lerer committed
84
85
86
87
                if sys.version_info[0] == 2:
                    entry = pickle.load(fo)
                else:
                    entry = pickle.load(fo, encoding='latin1')
88
89
90
91
92
93
94
95
96
                self.train_data.append(entry['data'])
                if 'labels' in entry:
                    self.train_labels += entry['labels']
                else:
                    self.train_labels += entry['fine_labels']
                fo.close()

            self.train_data = np.concatenate(self.train_data)
            self.train_data = self.train_data.reshape((50000, 3, 32, 32))
97
            self.train_data = self.train_data.transpose((0, 2, 3, 1))  # convert to HWC
98
99
        else:
            f = self.test_list[0][0]
moskomule's avatar
moskomule committed
100
            file = os.path.join(self.root, self.base_folder, f)
Soumith Chintala's avatar
Soumith Chintala committed
101
            fo = open(file, 'rb')
102
103
104
105
            if sys.version_info[0] == 2:
                entry = pickle.load(fo)
            else:
                entry = pickle.load(fo, encoding='latin1')
106
            self.test_data = entry['data']
Soumith Chintala's avatar
Soumith Chintala committed
107
            if 'labels' in entry:
108
                self.test_labels = entry['labels']
Soumith Chintala's avatar
Soumith Chintala committed
109
            else:
110
                self.test_labels = entry['fine_labels']
Soumith Chintala's avatar
Soumith Chintala committed
111
            fo.close()
112
            self.test_data = self.test_data.reshape((10000, 3, 32, 32))
113
            self.test_data = self.test_data.transpose((0, 2, 3, 1))  # convert to HWC
Soumith Chintala's avatar
Soumith Chintala committed
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        self._load_meta()

    def _load_meta(self):
        path = os.path.join(self.root, self.base_folder, self.meta['filename'])
        if not check_integrity(path, self.meta['md5']):
            raise RuntimeError('Dataset metadata file not found or corrupted.' +
                               ' You can use download=True to download it')
        with open(path, 'rb') as infile:
            if sys.version_info[0] == 2:
                data = pickle.load(infile)
            else:
                data = pickle.load(infile, encoding='latin1')
            self.classes = data[self.meta['key']]
        self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}

Soumith Chintala's avatar
Soumith Chintala committed
130
    def __getitem__(self, index):
131
132
133
134
135
136
137
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
Soumith Chintala's avatar
Soumith Chintala committed
138
139
140
141
        if self.train:
            img, target = self.train_data[index], self.train_labels[index]
        else:
            img, target = self.test_data[index], self.test_labels[index]
142

143
144
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
145
        img = Image.fromarray(img)
Soumith Chintala's avatar
Soumith Chintala committed
146
147
148
149
150
151
152
153
154
155
156

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        if self.train:
157
            return len(self.train_data)
Soumith Chintala's avatar
Soumith Chintala committed
158
        else:
159
            return len(self.test_data)
Soumith Chintala's avatar
Soumith Chintala committed
160
161
162

    def _check_integrity(self):
        root = self.root
163
        for fentry in (self.train_list + self.test_list):
Soumith Chintala's avatar
Soumith Chintala committed
164
165
            filename, md5 = fentry[0], fentry[1]
            fpath = os.path.join(root, self.base_folder, filename)
soumith's avatar
soumith committed
166
            if not check_integrity(fpath, md5):
Soumith Chintala's avatar
Soumith Chintala committed
167
168
169
170
171
172
173
174
175
                return False
        return True

    def download(self):
        import tarfile

        if self._check_integrity():
            print('Files already downloaded and verified')
            return
176

177
        root = self.root
soumith's avatar
soumith committed
178
        download_url(self.url, root, self.filename, self.tgz_md5)
Soumith Chintala's avatar
Soumith Chintala committed
179
180
181

        # extract file
        cwd = os.getcwd()
182
        tar = tarfile.open(os.path.join(root, self.filename), "r:gz")
183
        os.chdir(root)
Soumith Chintala's avatar
Soumith Chintala committed
184
185
186
187
        tar.extractall()
        tar.close()
        os.chdir(cwd)

188
189
190
191
192
193
194
195
196
197
198
199
    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        tmp = 'train' if self.train is True else 'test'
        fmt_str += '    Split: {}\n'.format(tmp)
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str

Soumith Chintala's avatar
Soumith Chintala committed
200
201

class CIFAR100(CIFAR10):
jvmancuso's avatar
jvmancuso committed
202
203
204
205
    """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.

    This is a subclass of the `CIFAR10` Dataset.
    """
Soumith Chintala's avatar
Soumith Chintala committed
206
    base_folder = 'cifar-100-python'
Tzu-Wei Huang's avatar
Tzu-Wei Huang committed
207
    url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
Soumith Chintala's avatar
Soumith Chintala committed
208
209
210
    filename = "cifar-100-python.tar.gz"
    tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
    train_list = [
211
        ['train', '16019d7e3df5f24257cddd939b257f8d'],
Soumith Chintala's avatar
Soumith Chintala committed
212
213
214
    ]

    test_list = [
215
        ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
Soumith Chintala's avatar
Soumith Chintala committed
216
    ]
217
218
219
220
221
    meta = {
        'filename': 'meta',
        'key': 'fine_label_names',
        'md5': '7973b15100ade9c7d40fb424638fde48',
    }