stl10.py 7.04 KB
Newer Older
Elad Hoffer's avatar
Elad Hoffer committed
1
2
import os
import os.path
3
from typing import Any, Callable, Optional, Tuple
Elad Hoffer's avatar
Elad Hoffer committed
4

5
6
7
import numpy as np
from PIL import Image

8
from .utils import check_integrity, download_and_extract_archive, verify_str_arg
9
from .vision import VisionDataset
Elad Hoffer's avatar
Elad Hoffer committed
10

Francisco Massa's avatar
Francisco Massa committed
11
12

class STL10(VisionDataset):
13
14
15
16
17
18
19
    """`STL10 <https://cs.stanford.edu/~acoates/stl10/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
            ``stl10_binary`` exists.
        split (string): One of {'train', 'test', 'unlabeled', 'train+unlabeled'}.
            Accordingly dataset is selected.
20
21
        folds (int, optional): One of {0-9} or None.
            For training, loads one of the 10 pre-defined folds of 1k samples for the
22
            standard evaluation procedure. If no value is passed, loads the 5k samples.
23
24
25
26
27
28
29
30
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
    """
31
32

    base_folder = "stl10_binary"
Elad Hoffer's avatar
Elad Hoffer committed
33
34
    url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz"
    filename = "stl10_binary.tar.gz"
35
36
37
    tgz_md5 = "91f7769df0f17e558f3565bffb0c7dfb"
    class_names_file = "class_names.txt"
    folds_list_file = "fold_indices.txt"
Elad Hoffer's avatar
Elad Hoffer committed
38
    train_list = [
39
40
41
        ["train_X.bin", "918c2871b30a85fa023e0c44e0bee87f"],
        ["train_y.bin", "5a34089d4802c674881badbb80307741"],
        ["unlabeled_X.bin", "5242ba1fed5e4be9e1e742405eb56ca4"],
Elad Hoffer's avatar
Elad Hoffer committed
42
43
    ]

44
45
    test_list = [["test_X.bin", "7f263ba9f9e0b06b93213547f721ac82"], ["test_y.bin", "36f9794fa4beb8a2c72628de14fa638e"]]
    splits = ("train", "train+unlabeled", "unlabeled", "test")
Elad Hoffer's avatar
Elad Hoffer committed
46

47
    def __init__(
48
49
50
51
52
53
54
        self,
        root: str,
        split: str = "train",
        folds: Optional[int] = None,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
55
    ) -> None:
56
        super(STL10, self).__init__(root, transform=transform, target_transform=target_transform)
57
        self.split = verify_str_arg(split, "split", self.splits)
58
        self.folds = self._verify_folds(folds)
Elad Hoffer's avatar
Elad Hoffer committed
59
60
61

        if download:
            self.download()
62
        elif not self._check_integrity():
63
            raise RuntimeError("Dataset not found or corrupted. " "You can use download=True to download it")
Elad Hoffer's avatar
Elad Hoffer committed
64
65

        # now load the picked numpy arrays
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
66
        self.labels: Optional[np.ndarray]
67
68
        if self.split == "train":
            self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0])
69
70
            self.__load_folds(folds)

71
72
        elif self.split == "train+unlabeled":
            self.data, self.labels = self.__loadfile(self.train_list[0][0], self.train_list[1][0])
73
            self.__load_folds(folds)
Elad Hoffer's avatar
Elad Hoffer committed
74
75
            unlabeled_data, _ = self.__loadfile(self.train_list[2][0])
            self.data = np.concatenate((self.data, unlabeled_data))
76
            self.labels = np.concatenate((self.labels, np.asarray([-1] * unlabeled_data.shape[0])))
Elad Hoffer's avatar
Elad Hoffer committed
77

78
        elif self.split == "unlabeled":
Elad Hoffer's avatar
Elad Hoffer committed
79
            self.data, _ = self.__loadfile(self.train_list[2][0])
80
            self.labels = np.asarray([-1] * self.data.shape[0])
Elad Hoffer's avatar
Elad Hoffer committed
81
        else:  # self.split == 'test':
82
            self.data, self.labels = self.__loadfile(self.test_list[0][0], self.test_list[1][0])
Elad Hoffer's avatar
Elad Hoffer committed
83

84
        class_file = os.path.join(self.root, self.base_folder, self.class_names_file)
Elad Hoffer's avatar
Elad Hoffer committed
85
86
87
88
        if os.path.isfile(class_file):
            with open(class_file) as f:
                self.classes = f.read().splitlines()

89
    def _verify_folds(self, folds: Optional[int]) -> Optional[int]:
90
91
92
93
94
        if folds is None:
            return folds
        elif isinstance(folds, int):
            if folds in range(10):
                return folds
95
            msg = "Value for argument folds should be in the range [0, 10), " "but got {}."
96
97
98
99
100
            raise ValueError(msg.format(folds))
        else:
            msg = "Expected type None or int for argument folds, but got type {}."
            raise ValueError(msg.format(type(folds)))

101
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
102
103
104
105
106
107
108
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
109
        target: Optional[int]
Elad Hoffer's avatar
Elad Hoffer committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        if self.labels is not None:
            img, target = self.data[index], int(self.labels[index])
        else:
            img, target = self.data[index], None

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(np.transpose(img, (1, 2, 0)))

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

127
    def __len__(self) -> int:
Elad Hoffer's avatar
Elad Hoffer committed
128
129
        return self.data.shape[0]

130
    def __loadfile(self, data_file: str, labels_file: Optional[str] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]:
Elad Hoffer's avatar
Elad Hoffer committed
131
132
        labels = None
        if labels_file:
133
134
            path_to_labels = os.path.join(self.root, self.base_folder, labels_file)
            with open(path_to_labels, "rb") as f:
Elad Hoffer's avatar
Elad Hoffer committed
135
136
137
                labels = np.fromfile(f, dtype=np.uint8) - 1  # 0-based

        path_to_data = os.path.join(self.root, self.base_folder, data_file)
138
        with open(path_to_data, "rb") as f:
Elad Hoffer's avatar
Elad Hoffer committed
139
140
141
142
143
144
            # read whole file in uint8 chunks
            everything = np.fromfile(f, dtype=np.uint8)
            images = np.reshape(everything, (-1, 3, 96, 96))
            images = np.transpose(images, (0, 1, 3, 2))

        return images, labels
145

146
    def _check_integrity(self) -> bool:
Francisco Massa's avatar
Francisco Massa committed
147
        root = self.root
148
        for fentry in self.train_list + self.test_list:
Francisco Massa's avatar
Francisco Massa committed
149
150
151
152
153
154
            filename, md5 = fentry[0], fentry[1]
            fpath = os.path.join(root, self.base_folder, filename)
            if not check_integrity(fpath, md5):
                return False
        return True

155
    def download(self) -> None:
Francisco Massa's avatar
Francisco Massa committed
156
        if self._check_integrity():
157
            print("Files already downloaded and verified")
Francisco Massa's avatar
Francisco Massa committed
158
            return
159
        download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
160
        self._check_integrity()
Francisco Massa's avatar
Francisco Massa committed
161

162
    def extra_repr(self) -> str:
163
        return "Split: {split}".format(**self.__dict__)
164

165
    def __load_folds(self, folds: Optional[int]) -> None:
166
        # loads one of the folds if specified
167
168
        if folds is None:
            return
169
170
        path_to_folds = os.path.join(self.root, self.base_folder, self.folds_list_file)
        with open(path_to_folds, "r") as f:
171
            str_idx = f.read().splitlines()[folds]
172
            list_idx = np.fromstring(str_idx, dtype=np.int64, sep=" ")
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
173
174
175
            self.data = self.data[list_idx, :, :, :]
            if self.labels is not None:
                self.labels = self.labels[list_idx]