stl10.py 6.67 KB
Newer Older
Elad Hoffer's avatar
Elad Hoffer committed
1
2
3
4
5
6
from __future__ import print_function
from PIL import Image
import os
import os.path
import numpy as np

Francisco Massa's avatar
Francisco Massa committed
7
from .vision import VisionDataset
8
from .utils import check_integrity, download_and_extract_archive
Elad Hoffer's avatar
Elad Hoffer committed
9

Francisco Massa's avatar
Francisco Massa committed
10
11

class STL10(VisionDataset):
12
13
14
15
16
17
18
    """`STL10 <https://cs.stanford.edu/~acoates/stl10/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
            ``stl10_binary`` exists.
        split (string): One of {'train', 'test', 'unlabeled', 'train+unlabeled'}.
            Accordingly dataset is selected.
19
20
21
        folds (int, optional): One of {0-9} or None.
            For training, loads one of the 10 pre-defined folds of 1k samples for the
             standard evaluation procedure. If no value is passed, loads the 5k samples.
22
23
24
25
26
27
28
29
30
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
Elad Hoffer's avatar
Elad Hoffer committed
31
32
33
34
35
    base_folder = 'stl10_binary'
    url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz"
    filename = "stl10_binary.tar.gz"
    tgz_md5 = '91f7769df0f17e558f3565bffb0c7dfb'
    class_names_file = 'class_names.txt'
36
    folds_list_file = 'fold_indices.txt'
Elad Hoffer's avatar
Elad Hoffer committed
37
38
39
40
41
42
43
44
45
46
    train_list = [
        ['train_X.bin', '918c2871b30a85fa023e0c44e0bee87f'],
        ['train_y.bin', '5a34089d4802c674881badbb80307741'],
        ['unlabeled_X.bin', '5242ba1fed5e4be9e1e742405eb56ca4']
    ]

    test_list = [
        ['test_X.bin', '7f263ba9f9e0b06b93213547f721ac82'],
        ['test_y.bin', '36f9794fa4beb8a2c72628de14fa638e']
    ]
47
    splits = ('train', 'train+unlabeled', 'unlabeled', 'test')
Elad Hoffer's avatar
Elad Hoffer committed
48

49
50
    def __init__(self, root, split='train', folds=None, transform=None,
                 target_transform=None, download=False):
51
52
53
54
        if split not in self.splits:
            raise ValueError('Split "{}" not found. Valid splits are: {}'.format(
                split, ', '.join(self.splits),
            ))
55
56
        super(STL10, self).__init__(root, transform=transform,
                                    target_transform=target_transform)
Elad Hoffer's avatar
Elad Hoffer committed
57
        self.split = split  # train/test/unlabeled set
58
        self.folds = folds  # one of the 10 pre-defined folds or the full dataset
Elad Hoffer's avatar
Elad Hoffer committed
59
60
61
62
63
64

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError(
soumith's avatar
soumith committed
65
66
                'Dataset not found or corrupted. '
                'You can use download=True to download it')
Elad Hoffer's avatar
Elad Hoffer committed
67
68
69
70
71

        # now load the picked numpy arrays
        if self.split == 'train':
            self.data, self.labels = self.__loadfile(
                self.train_list[0][0], self.train_list[1][0])
72
73
            self.__load_folds(folds)

Elad Hoffer's avatar
Elad Hoffer committed
74
75
76
        elif self.split == 'train+unlabeled':
            self.data, self.labels = self.__loadfile(
                self.train_list[0][0], self.train_list[1][0])
77
            self.__load_folds(folds)
Elad Hoffer's avatar
Elad Hoffer committed
78
79
80
81
82
83
84
            unlabeled_data, _ = self.__loadfile(self.train_list[2][0])
            self.data = np.concatenate((self.data, unlabeled_data))
            self.labels = np.concatenate(
                (self.labels, np.asarray([-1] * unlabeled_data.shape[0])))

        elif self.split == 'unlabeled':
            self.data, _ = self.__loadfile(self.train_list[2][0])
85
            self.labels = np.asarray([-1] * self.data.shape[0])
Elad Hoffer's avatar
Elad Hoffer committed
86
87
88
89
90
        else:  # self.split == 'test':
            self.data, self.labels = self.__loadfile(
                self.test_list[0][0], self.test_list[1][0])

        class_file = os.path.join(
moskomule's avatar
moskomule committed
91
            self.root, self.base_folder, self.class_names_file)
Elad Hoffer's avatar
Elad Hoffer committed
92
93
94
95
96
        if os.path.isfile(class_file):
            with open(class_file) as f:
                self.classes = f.read().splitlines()

    def __getitem__(self, index):
97
98
99
100
101
102
103
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
Elad Hoffer's avatar
Elad Hoffer committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        if self.labels is not None:
            img, target = self.data[index], int(self.labels[index])
        else:
            img, target = self.data[index], None

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(np.transpose(img, (1, 2, 0)))

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return self.data.shape[0]

    def __loadfile(self, data_file, labels_file=None):
        labels = None
        if labels_file:
            path_to_labels = os.path.join(
                self.root, self.base_folder, labels_file)
            with open(path_to_labels, 'rb') as f:
                labels = np.fromfile(f, dtype=np.uint8) - 1  # 0-based

        path_to_data = os.path.join(self.root, self.base_folder, data_file)
        with open(path_to_data, 'rb') as f:
            # read whole file in uint8 chunks
            everything = np.fromfile(f, dtype=np.uint8)
            images = np.reshape(everything, (-1, 3, 96, 96))
            images = np.transpose(images, (0, 1, 3, 2))

        return images, labels
140

Francisco Massa's avatar
Francisco Massa committed
141
142
143
144
145
146
147
148
149
150
151
152
153
    def _check_integrity(self):
        root = self.root
        for fentry in (self.train_list + self.test_list):
            filename, md5 = fentry[0], fentry[1]
            fpath = os.path.join(root, self.base_folder, filename)
            if not check_integrity(fpath, md5):
                return False
        return True

    def download(self):
        if self._check_integrity():
            print('Files already downloaded and verified')
            return
154
        download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
Francisco Massa's avatar
Francisco Massa committed
155

156
157
    def extra_repr(self):
        return "Split: {split}".format(**self.__dict__)
158
159
160
161
162
163
164
165
166
167
168
169
170

    def __load_folds(self, folds):
        # loads one of the folds if specified
        if isinstance(folds, int):
            if folds >= 0 and folds < 10:
                path_to_folds = os.path.join(
                    self.root, self.base_folder, self.folds_list_file)
                with open(path_to_folds, 'r') as f:
                    str_idx = f.read().splitlines()[folds]
                    list_idx = np.fromstring(str_idx, dtype=np.uint8, sep=' ')
                    self.data, self.labels = self.data[list_idx, :, :, :], self.labels[list_idx]
            else:
                raise ValueError('Folds "{}" not found. Valid splits are: 0-9.'.format(folds))