stl10.py 6.78 KB
Newer Older
Elad Hoffer's avatar
Elad Hoffer committed
1
2
3
4
5
from PIL import Image
import os
import os.path
import numpy as np

Francisco Massa's avatar
Francisco Massa committed
6
from .vision import VisionDataset
7
from .utils import check_integrity, download_and_extract_archive, verify_str_arg
Elad Hoffer's avatar
Elad Hoffer committed
8

Francisco Massa's avatar
Francisco Massa committed
9
10

class STL10(VisionDataset):
11
12
13
14
15
16
17
    """`STL10 <https://cs.stanford.edu/~acoates/stl10/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
            ``stl10_binary`` exists.
        split (string): One of {'train', 'test', 'unlabeled', 'train+unlabeled'}.
            Accordingly dataset is selected.
18
19
20
        folds (int, optional): One of {0-9} or None.
            For training, loads one of the 10 pre-defined folds of 1k samples for the
             standard evaluation procedure. If no value is passed, loads the 5k samples.
21
22
23
24
25
26
27
28
29
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
Elad Hoffer's avatar
Elad Hoffer committed
30
31
32
33
34
    base_folder = 'stl10_binary'
    url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz"
    filename = "stl10_binary.tar.gz"
    tgz_md5 = '91f7769df0f17e558f3565bffb0c7dfb'
    class_names_file = 'class_names.txt'
35
    folds_list_file = 'fold_indices.txt'
Elad Hoffer's avatar
Elad Hoffer committed
36
37
38
39
40
41
42
43
44
45
    train_list = [
        ['train_X.bin', '918c2871b30a85fa023e0c44e0bee87f'],
        ['train_y.bin', '5a34089d4802c674881badbb80307741'],
        ['unlabeled_X.bin', '5242ba1fed5e4be9e1e742405eb56ca4']
    ]

    test_list = [
        ['test_X.bin', '7f263ba9f9e0b06b93213547f721ac82'],
        ['test_y.bin', '36f9794fa4beb8a2c72628de14fa638e']
    ]
46
    splits = ('train', 'train+unlabeled', 'unlabeled', 'test')
Elad Hoffer's avatar
Elad Hoffer committed
47

48
49
50
51
    def __init__(self, root, split='train', folds=None, transform=None,
                 target_transform=None, download=False):
        super(STL10, self).__init__(root, transform=transform,
                                    target_transform=target_transform)
52
        self.split = verify_str_arg(split, "split", self.splits)
53
        self.folds = self._verify_folds(folds)
Elad Hoffer's avatar
Elad Hoffer committed
54
55
56

        if download:
            self.download()
57
        elif not self._check_integrity():
Elad Hoffer's avatar
Elad Hoffer committed
58
            raise RuntimeError(
soumith's avatar
soumith committed
59
60
                'Dataset not found or corrupted. '
                'You can use download=True to download it')
Elad Hoffer's avatar
Elad Hoffer committed
61
62
63
64
65

        # now load the picked numpy arrays
        if self.split == 'train':
            self.data, self.labels = self.__loadfile(
                self.train_list[0][0], self.train_list[1][0])
66
67
            self.__load_folds(folds)

Elad Hoffer's avatar
Elad Hoffer committed
68
69
70
        elif self.split == 'train+unlabeled':
            self.data, self.labels = self.__loadfile(
                self.train_list[0][0], self.train_list[1][0])
71
            self.__load_folds(folds)
Elad Hoffer's avatar
Elad Hoffer committed
72
73
74
75
76
77
78
            unlabeled_data, _ = self.__loadfile(self.train_list[2][0])
            self.data = np.concatenate((self.data, unlabeled_data))
            self.labels = np.concatenate(
                (self.labels, np.asarray([-1] * unlabeled_data.shape[0])))

        elif self.split == 'unlabeled':
            self.data, _ = self.__loadfile(self.train_list[2][0])
79
            self.labels = np.asarray([-1] * self.data.shape[0])
Elad Hoffer's avatar
Elad Hoffer committed
80
81
82
83
84
        else:  # self.split == 'test':
            self.data, self.labels = self.__loadfile(
                self.test_list[0][0], self.test_list[1][0])

        class_file = os.path.join(
moskomule's avatar
moskomule committed
85
            self.root, self.base_folder, self.class_names_file)
Elad Hoffer's avatar
Elad Hoffer committed
86
87
88
89
        if os.path.isfile(class_file):
            with open(class_file) as f:
                self.classes = f.read().splitlines()

90
91
92
93
94
95
96
97
98
99
100
101
102
    def _verify_folds(self, folds):
        if folds is None:
            return folds
        elif isinstance(folds, int):
            if folds in range(10):
                return folds
            msg = ("Value for argument folds should be in the range [0, 10), "
                   "but got {}.")
            raise ValueError(msg.format(folds))
        else:
            msg = "Expected type None or int for argument folds, but got type {}."
            raise ValueError(msg.format(type(folds)))

Elad Hoffer's avatar
Elad Hoffer committed
103
    def __getitem__(self, index):
104
105
106
107
108
109
110
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
Elad Hoffer's avatar
Elad Hoffer committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        if self.labels is not None:
            img, target = self.data[index], int(self.labels[index])
        else:
            img, target = self.data[index], None

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(np.transpose(img, (1, 2, 0)))

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return self.data.shape[0]

    def __loadfile(self, data_file, labels_file=None):
        labels = None
        if labels_file:
            path_to_labels = os.path.join(
                self.root, self.base_folder, labels_file)
            with open(path_to_labels, 'rb') as f:
                labels = np.fromfile(f, dtype=np.uint8) - 1  # 0-based

        path_to_data = os.path.join(self.root, self.base_folder, data_file)
        with open(path_to_data, 'rb') as f:
            # read whole file in uint8 chunks
            everything = np.fromfile(f, dtype=np.uint8)
            images = np.reshape(everything, (-1, 3, 96, 96))
            images = np.transpose(images, (0, 1, 3, 2))

        return images, labels
147

Francisco Massa's avatar
Francisco Massa committed
148
149
150
151
152
153
154
155
156
157
158
159
160
    def _check_integrity(self):
        root = self.root
        for fentry in (self.train_list + self.test_list):
            filename, md5 = fentry[0], fentry[1]
            fpath = os.path.join(root, self.base_folder, filename)
            if not check_integrity(fpath, md5):
                return False
        return True

    def download(self):
        if self._check_integrity():
            print('Files already downloaded and verified')
            return
161
        download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
162
        self._check_integrity()
Francisco Massa's avatar
Francisco Massa committed
163

164
165
    def extra_repr(self):
        return "Split: {split}".format(**self.__dict__)
166
167
168

    def __load_folds(self, folds):
        # loads one of the folds if specified
169
170
171
172
173
174
175
176
        if folds is None:
            return
        path_to_folds = os.path.join(
            self.root, self.base_folder, self.folds_list_file)
        with open(path_to_folds, 'r') as f:
            str_idx = f.read().splitlines()[folds]
            list_idx = np.fromstring(str_idx, dtype=np.uint8, sep=' ')
            self.data, self.labels = self.data[list_idx, :, :, :], self.labels[list_idx]