README.md 1.4 KB
Newer Older
1
2
3
# Object detection reference training scripts

This folder contains reference training scripts for object detection.
4
They serve as a log of how to train specific models, to provide baseline
5
6
training and evaluation scripts to quickly bootstrap research.

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
To execute the example commands below you must install the following:

```
cython
pycocotools
matplotlib
```

You must modify the following flags:

`--data-path=/path/to/coco/dataset`

`--nproc_per_node=<number_of_gpus_available>`

Except otherwise noted, all models have been trained on 8x V100 GPUs. 
22
23
24
25
26
27
28
29

### Faster R-CNN
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\
    --dataset coco --model fasterrcnn_resnet50_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3
```

30
31
32
33
34
35
36
### RetinaNet
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\
    --dataset coco --model retinanet_resnet50_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01
```

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

### Mask R-CNN
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\
    --dataset coco --model maskrcnn_resnet50_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3
```


### Keypoint R-CNN
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\
    --dataset coco_kp --model keypointrcnn_resnet50_fpn --epochs 46\
    --lr-steps 36 43 --aspect-ratio-group-factor 3
```