README.md 1.18 KB
Newer Older
1
2
3
# Object detection reference training scripts

This folder contains reference training scripts for object detection.
4
They serve as a log of how to train specific models, to provide baseline
5
6
training and evaluation scripts to quickly bootstrap research.

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
To execute the example commands below you must install the following:

```
cython
pycocotools
matplotlib
```

You must modify the following flags:

`--data-path=/path/to/coco/dataset`

`--nproc_per_node=<number_of_gpus_available>`

Except otherwise noted, all models have been trained on 8x V100 GPUs. 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

### Faster R-CNN
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\
    --dataset coco --model fasterrcnn_resnet50_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3
```


### Mask R-CNN
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\
    --dataset coco --model maskrcnn_resnet50_fpn --epochs 26\
    --lr-steps 16 22 --aspect-ratio-group-factor 3
```


### Keypoint R-CNN
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\
    --dataset coco_kp --model keypointrcnn_resnet50_fpn --epochs 46\
    --lr-steps 36 43 --aspect-ratio-group-factor 3
```