# Object detection reference training scripts This folder contains reference training scripts for object detection. They serve as a log of how to train specific models, to provide baseline training and evaluation scripts to quickly bootstrap research. To execute the example commands below you must install the following: ``` cython pycocotools matplotlib ``` You must modify the following flags: `--data-path=/path/to/coco/dataset` `--nproc_per_node=` Except otherwise noted, all models have been trained on 8x V100 GPUs. ### Faster R-CNN ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ --dataset coco --model fasterrcnn_resnet50_fpn --epochs 26\ --lr-steps 16 22 --aspect-ratio-group-factor 3 ``` ### RetinaNet ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ --dataset coco --model retinanet_resnet50_fpn --epochs 26\ --lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01 ``` ### Mask R-CNN ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ --dataset coco --model maskrcnn_resnet50_fpn --epochs 26\ --lr-steps 16 22 --aspect-ratio-group-factor 3 ``` ### Keypoint R-CNN ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ --dataset coco_kp --model keypointrcnn_resnet50_fpn --epochs 46\ --lr-steps 36 43 --aspect-ratio-group-factor 3 ```