mnist.py 20 KB
Newer Older
1
import codecs
Tian Qi Chen's avatar
Tian Qi Chen committed
2
3
import os
import os.path
4
import shutil
5
import string
6
import warnings
7
from typing import Any, Callable, Dict, List, Optional, Tuple
8
from urllib.error import URLError
9
10
11
12
13

import numpy as np
import torch
from PIL import Image

14
from .utils import download_and_extract_archive, extract_archive, verify_str_arg, check_integrity
15
from .vision import VisionDataset
Tian Qi Chen's avatar
Tian Qi Chen committed
16

17

18
class MNIST(VisionDataset):
19
20
21
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
22
23
24
25
26
        root (string): Root directory of dataset where ``MNIST/raw/train-images-idx3-ubyte``
            and  ``MNIST/raw/t10k-images-idx3-ubyte`` exist.
        train (bool, optional): If True, creates dataset from ``train-images-idx3-ubyte``,
            otherwise from ``t10k-images-idx3-ubyte``.
        download (bool, optional): If True, downloads the dataset from the internet and
27
28
29
30
31
32
33
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
34

35
    mirrors = [
36
37
        "http://yann.lecun.com/exdb/mnist/",
        "https://ossci-datasets.s3.amazonaws.com/mnist/",
38
39
    ]

40
    resources = [
41
42
43
        ("train-images-idx3-ubyte.gz", "f68b3c2dcbeaaa9fbdd348bbdeb94873"),
        ("train-labels-idx1-ubyte.gz", "d53e105ee54ea40749a09fcbcd1e9432"),
        ("t10k-images-idx3-ubyte.gz", "9fb629c4189551a2d022fa330f9573f3"),
44
        ("t10k-labels-idx1-ubyte.gz", "ec29112dd5afa0611ce80d1b7f02629c"),
Tian Qi Chen's avatar
Tian Qi Chen committed
45
    ]
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
    training_file = "training.pt"
    test_file = "test.pt"
    classes = [
        "0 - zero",
        "1 - one",
        "2 - two",
        "3 - three",
        "4 - four",
        "5 - five",
        "6 - six",
        "7 - seven",
        "8 - eight",
        "9 - nine",
    ]
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    @property
    def train_labels(self):
        warnings.warn("train_labels has been renamed targets")
        return self.targets

    @property
    def test_labels(self):
        warnings.warn("test_labels has been renamed targets")
        return self.targets

    @property
    def train_data(self):
        warnings.warn("train_data has been renamed data")
        return self.data

    @property
    def test_data(self):
        warnings.warn("test_data has been renamed data")
        return self.data

82
    def __init__(
83
84
85
86
87
88
        self,
        root: str,
        train: bool = True,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
89
    ) -> None:
90
        super(MNIST, self).__init__(root, transform=transform, target_transform=target_transform)
91
        self.train = train  # training set or test set
Tian Qi Chen's avatar
Tian Qi Chen committed
92

93
94
95
96
        if self._check_legacy_exist():
            self.data, self.targets = self._load_legacy_data()
            return

Tian Qi Chen's avatar
Tian Qi Chen committed
97
98
99
100
        if download:
            self.download()

        if not self._check_exists():
101
            raise RuntimeError("Dataset not found." + " You can use download=True to download it")
Tian Qi Chen's avatar
Tian Qi Chen committed
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        self.data, self.targets = self._load_data()

    def _check_legacy_exist(self):
        processed_folder_exists = os.path.exists(self.processed_folder)
        if not processed_folder_exists:
            return False

        return all(
            check_integrity(os.path.join(self.processed_folder, file)) for file in (self.training_file, self.test_file)
        )

    def _load_legacy_data(self):
        # This is for BC only. We no longer cache the data in a custom binary, but simply read from the raw data
        # directly.
        data_file = self.training_file if self.train else self.test_file
        return torch.load(os.path.join(self.processed_folder, data_file))

    def _load_data(self):
        image_file = f"{'train' if self.train else 't10k'}-images-idx3-ubyte"
        data = read_image_file(os.path.join(self.raw_folder, image_file))

        label_file = f"{'train' if self.train else 't10k'}-labels-idx1-ubyte"
        targets = read_label_file(os.path.join(self.raw_folder, label_file))

        return data, targets
Tian Qi Chen's avatar
Tian Qi Chen committed
128

129
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
130
131
132
133
134
135
136
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
137
        img, target = self.data[index], int(self.targets[index])
Tian Qi Chen's avatar
Tian Qi Chen committed
138
139
140

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
141
        img = Image.fromarray(img.numpy(), mode="L")
Tian Qi Chen's avatar
Tian Qi Chen committed
142
143
144
145
146
147
148
149
150

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

151
    def __len__(self) -> int:
152
        return len(self.data)
Tian Qi Chen's avatar
Tian Qi Chen committed
153

154
    @property
155
    def raw_folder(self) -> str:
156
        return os.path.join(self.root, self.__class__.__name__, "raw")
157
158

    @property
159
    def processed_folder(self) -> str:
160
        return os.path.join(self.root, self.__class__.__name__, "processed")
161
162

    @property
163
    def class_to_idx(self) -> Dict[str, int]:
164
165
        return {_class: i for i, _class in enumerate(self.classes)}

166
    def _check_exists(self) -> bool:
167
168
169
170
        return all(
            check_integrity(os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0]))
            for url, _ in self.resources
        )
171

172
    def download(self) -> None:
173
        """Download the MNIST data if it doesn't exist already."""
Tian Qi Chen's avatar
Tian Qi Chen committed
174
175
176
177

        if self._check_exists():
            return

178
        os.makedirs(self.raw_folder, exist_ok=True)
Tian Qi Chen's avatar
Tian Qi Chen committed
179

180
        # download files
181
182
183
184
185
        for filename, md5 in self.resources:
            for mirror in self.mirrors:
                url = "{}{}".format(mirror, filename)
                try:
                    print("Downloading {}".format(url))
186
                    download_and_extract_archive(url, download_root=self.raw_folder, filename=filename, md5=md5)
187
                except URLError as error:
188
                    print("Failed to download (trying next):\n{}".format(error))
189
190
191
192
193
194
                    continue
                finally:
                    print()
                break
            else:
                raise RuntimeError("Error downloading {}".format(filename))
Tian Qi Chen's avatar
Tian Qi Chen committed
195

196
    def extra_repr(self) -> str:
197
        return "Split: {}".format("Train" if self.train is True else "Test")
198

199

200
class FashionMNIST(MNIST):
201
202
203
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
204
205
206
207
208
        root (string): Root directory of dataset where ``FashionMNIST/raw/train-images-idx3-ubyte``
            and  ``FashionMNIST/raw/t10k-images-idx3-ubyte`` exist.
        train (bool, optional): If True, creates dataset from ``train-images-idx3-ubyte``,
            otherwise from ``t10k-images-idx3-ubyte``.
        download (bool, optional): If True, downloads the dataset from the internet and
209
210
211
212
213
214
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
215
    """
216
217

    mirrors = ["http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/"]
218

219
    resources = [
220
221
222
        ("train-images-idx3-ubyte.gz", "8d4fb7e6c68d591d4c3dfef9ec88bf0d"),
        ("train-labels-idx1-ubyte.gz", "25c81989df183df01b3e8a0aad5dffbe"),
        ("t10k-images-idx3-ubyte.gz", "bef4ecab320f06d8554ea6380940ec79"),
223
        ("t10k-labels-idx1-ubyte.gz", "bb300cfdad3c16e7a12a480ee83cd310"),
224
    ]
225
    classes = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
226
227


hysts's avatar
hysts committed
228
229
230
231
class KMNIST(MNIST):
    """`Kuzushiji-MNIST <https://github.com/rois-codh/kmnist>`_ Dataset.

    Args:
232
233
234
235
236
        root (string): Root directory of dataset where ``KMNIST/raw/train-images-idx3-ubyte``
            and  ``KMNIST/raw/t10k-images-idx3-ubyte`` exist.
        train (bool, optional): If True, creates dataset from ``train-images-idx3-ubyte``,
            otherwise from ``t10k-images-idx3-ubyte``.
        download (bool, optional): If True, downloads the dataset from the internet and
hysts's avatar
hysts committed
237
238
239
240
241
242
243
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
244
245

    mirrors = ["http://codh.rois.ac.jp/kmnist/dataset/kmnist/"]
246

247
    resources = [
248
249
250
        ("train-images-idx3-ubyte.gz", "bdb82020997e1d708af4cf47b453dcf7"),
        ("train-labels-idx1-ubyte.gz", "e144d726b3acfaa3e44228e80efcd344"),
        ("t10k-images-idx3-ubyte.gz", "5c965bf0a639b31b8f53240b1b52f4d7"),
251
        ("t10k-labels-idx1-ubyte.gz", "7320c461ea6c1c855c0b718fb2a4b134"),
hysts's avatar
hysts committed
252
    ]
253
    classes = ["o", "ki", "su", "tsu", "na", "ha", "ma", "ya", "re", "wo"]
hysts's avatar
hysts committed
254
255


256
class EMNIST(MNIST):
Alex Alemi's avatar
Alex Alemi committed
257
    """`EMNIST <https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist>`_ Dataset.
258
259

    Args:
260
261
        root (string): Root directory of dataset where ``EMNIST/raw/train-images-idx3-ubyte``
            and  ``EMNIST/raw/t10k-images-idx3-ubyte`` exist.
262
263
264
265
266
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
267
        download (bool, optional): If True, downloads the dataset from the internet and
268
269
270
271
272
273
274
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
275
276

    url = "https://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip"
277
    md5 = "58c8d27c78d21e728a6bc7b3cc06412e"
278
    splits = ("byclass", "bymerge", "balanced", "letters", "digits", "mnist")
279
    # Merged Classes assumes Same structure for both uppercase and lowercase version
280
    _merged_classes = {"c", "i", "j", "k", "l", "m", "o", "p", "s", "u", "v", "w", "x", "y", "z"}
281
    _all_classes = set(string.digits + string.ascii_letters)
282
    classes_split_dict = {
283
284
285
286
287
288
        "byclass": sorted(list(_all_classes)),
        "bymerge": sorted(list(_all_classes - _merged_classes)),
        "balanced": sorted(list(_all_classes - _merged_classes)),
        "letters": ["N/A"] + list(string.ascii_lowercase),
        "digits": list(string.digits),
        "mnist": list(string.digits),
289
    }
290

291
    def __init__(self, root: str, split: str, **kwargs: Any) -> None:
292
        self.split = verify_str_arg(split, "split", self.splits)
293
294
295
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super(EMNIST, self).__init__(root, **kwargs)
296
        self.classes = self.classes_split_dict[self.split]
Tian Qi Chen's avatar
Tian Qi Chen committed
297

298
    @staticmethod
299
    def _training_file(split) -> str:
300
        return "training_{}.pt".format(split)
301

302
    @staticmethod
303
    def _test_file(split) -> str:
304
        return "test_{}.pt".format(split)
305

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    @property
    def _file_prefix(self) -> str:
        return f"emnist-{self.split}-{'train' if self.train else 'test'}"

    @property
    def images_file(self) -> str:
        return os.path.join(self.raw_folder, f"{self._file_prefix}-images-idx3-ubyte")

    @property
    def labels_file(self) -> str:
        return os.path.join(self.raw_folder, f"{self._file_prefix}-labels-idx1-ubyte")

    def _load_data(self):
        return read_image_file(self.images_file), read_label_file(self.labels_file)

    def _check_exists(self) -> bool:
        return all(check_integrity(file) for file in (self.images_file, self.labels_file))

324
    def download(self) -> None:
325
        """Download the EMNIST data if it doesn't exist already."""
326

327
328
329
        if self._check_exists():
            return

330
        os.makedirs(self.raw_folder, exist_ok=True)
331

332
        download_and_extract_archive(self.url, download_root=self.raw_folder, md5=self.md5)
333
        gzip_folder = os.path.join(self.raw_folder, "gzip")
334
        for gzip_file in os.listdir(gzip_folder):
335
            if gzip_file.endswith(".gz"):
336
                extract_archive(os.path.join(gzip_folder, gzip_file), self.raw_folder)
337
        shutil.rmtree(gzip_folder)
338
339


340
341
342
343
class QMNIST(MNIST):
    """`QMNIST <https://github.com/facebookresearch/qmnist>`_ Dataset.

    Args:
344
345
        root (string): Root directory of dataset whose ``raw``
            subdir contains binary files of the datasets.
346
347
348
349
350
351
352
353
354
355
356
        what (string,optional): Can be 'train', 'test', 'test10k',
            'test50k', or 'nist' for respectively the mnist compatible
            training set, the 60k qmnist testing set, the 10k qmnist
            examples that match the mnist testing set, the 50k
            remaining qmnist testing examples, or all the nist
            digits. The default is to select 'train' or 'test'
            according to the compatibility argument 'train'.
        compat (bool,optional): A boolean that says whether the target
            for each example is class number (for compatibility with
            the MNIST dataloader) or a torch vector containing the
            full qmnist information. Default=True.
357
        download (bool, optional): If True, downloads the dataset from
358
359
360
361
362
363
364
365
366
367
368
369
            the internet and puts it in root directory. If dataset is
            already downloaded, it is not downloaded again.
        transform (callable, optional): A function/transform that
            takes in an PIL image and returns a transformed
            version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform
            that takes in the target and transforms it.
        train (bool,optional,compatibility): When argument 'what' is
            not specified, this boolean decides whether to load the
            training set ot the testing set.  Default: True.
    """

370
    subsets = {"train": "train", "test": "test", "test10k": "test", "test50k": "test", "nist": "nist"}
371
    resources: Dict[str, List[Tuple[str, str]]] = {  # type: ignore[assignment]
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        "train": [
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-images-idx3-ubyte.gz",
                "ed72d4157d28c017586c42bc6afe6370",
            ),
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-labels-idx2-int.gz",
                "0058f8dd561b90ffdd0f734c6a30e5e4",
            ),
        ],
        "test": [
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-images-idx3-ubyte.gz",
                "1394631089c404de565df7b7aeaf9412",
            ),
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-labels-idx2-int.gz",
                "5b5b05890a5e13444e108efe57b788aa",
            ),
        ],
        "nist": [
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-images-idx3-ubyte.xz",
                "7f124b3b8ab81486c9d8c2749c17f834",
            ),
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-labels-idx2-int.xz",
                "5ed0e788978e45d4a8bd4b7caec3d79d",
            ),
        ],
402
    }
403
404
405
406
407
408
409
410
411
412
413
414
    classes = [
        "0 - zero",
        "1 - one",
        "2 - two",
        "3 - three",
        "4 - four",
        "5 - five",
        "6 - six",
        "7 - seven",
        "8 - eight",
        "9 - nine",
    ]
415

416
    def __init__(
417
        self, root: str, what: Optional[str] = None, compat: bool = True, train: bool = True, **kwargs: Any
418
    ) -> None:
419
        if what is None:
420
            what = "train" if train else "test"
421
        self.what = verify_str_arg(what, "what", tuple(self.subsets.keys()))
422
        self.compat = compat
423
        self.data_file = what + ".pt"
424
425
426
427
        self.training_file = self.data_file
        self.test_file = self.data_file
        super(QMNIST, self).__init__(root, train, **kwargs)

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    @property
    def images_file(self) -> str:
        (url, _), _ = self.resources[self.subsets[self.what]]
        return os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0])

    @property
    def labels_file(self) -> str:
        _, (url, _) = self.resources[self.subsets[self.what]]
        return os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0])

    def _check_exists(self) -> bool:
        return all(check_integrity(file) for file in (self.images_file, self.labels_file))

    def _load_data(self):
        data = read_sn3_pascalvincent_tensor(self.images_file)
443
444
        assert data.dtype == torch.uint8
        assert data.ndimension() == 3
445
446

        targets = read_sn3_pascalvincent_tensor(self.labels_file).long()
447
        assert targets.ndimension() == 2
448

449
        if self.what == "test10k":
450
451
            data = data[0:10000, :, :].clone()
            targets = targets[0:10000, :].clone()
452
        elif self.what == "test50k":
453
454
455
456
457
            data = data[10000:, :, :].clone()
            targets = targets[10000:, :].clone()

        return data, targets

458
    def download(self) -> None:
459
        """Download the QMNIST data if it doesn't exist already.
460
        Note that we only download what has been asked for (argument 'what').
461
462
463
        """
        if self._check_exists():
            return
464

465
        os.makedirs(self.raw_folder, exist_ok=True)
466
        split = self.resources[self.subsets[self.what]]
467

468
        for url, md5 in split:
469
            download_and_extract_archive(url, self.raw_folder, md5=md5)
470

471
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
472
473
        # redefined to handle the compat flag
        img, target = self.data[index], self.targets[index]
474
        img = Image.fromarray(img.numpy(), mode="L")
475
476
477
478
479
480
481
482
        if self.transform is not None:
            img = self.transform(img)
        if self.compat:
            target = int(target[0])
        if self.target_transform is not None:
            target = self.target_transform(target)
        return img, target

483
    def extra_repr(self) -> str:
484
485
486
        return "Split: {}".format(self.what)


487
def get_int(b: bytes) -> int:
488
    return int(codecs.encode(b, "hex"), 16)
Tian Qi Chen's avatar
Tian Qi Chen committed
489

490

491
492
493
SN3_PASCALVINCENT_TYPEMAP = {
    8: (torch.uint8, np.uint8, np.uint8),
    9: (torch.int8, np.int8, np.int8),
494
495
496
497
    11: (torch.int16, np.dtype(">i2"), "i2"),
    12: (torch.int32, np.dtype(">i4"), "i4"),
    13: (torch.float32, np.dtype(">f4"), "f4"),
    14: (torch.float64, np.dtype(">f8"), "f8"),
498
499
500
}


501
def read_sn3_pascalvincent_tensor(path: str, strict: bool = True) -> torch.Tensor:
502
    """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
503
    Argument may be a filename, compressed filename, or file object.
504
505
    """
    # read
506
    with open(path, "rb") as f:
507
508
509
510
511
        data = f.read()
    # parse
    magic = get_int(data[0:4])
    nd = magic % 256
    ty = magic // 256
512
513
    assert 1 <= nd <= 3
    assert 8 <= ty <= 14
514
    m = SN3_PASCALVINCENT_TYPEMAP[ty]
515
    s = [get_int(data[4 * (i + 1) : 4 * (i + 2)]) for i in range(nd)]
516
517
    parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
    assert parsed.shape[0] == np.prod(s) or not strict
518
    return torch.from_numpy(parsed.astype(m[2])).view(*s)
519
520


521
def read_label_file(path: str) -> torch.Tensor:
522
    x = read_sn3_pascalvincent_tensor(path, strict=False)
523
524
    assert x.dtype == torch.uint8
    assert x.ndimension() == 1
525
    return x.long()
Tian Qi Chen's avatar
Tian Qi Chen committed
526

527

528
def read_image_file(path: str) -> torch.Tensor:
529
    x = read_sn3_pascalvincent_tensor(path, strict=False)
530
531
    assert x.dtype == torch.uint8
    assert x.ndimension() == 3
532
    return x