mnist.py 11.9 KB
Newer Older
Tian Qi Chen's avatar
Tian Qi Chen committed
1
2
3
4
5
6
from __future__ import print_function
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
7
import numpy as np
Tian Qi Chen's avatar
Tian Qi Chen committed
8
9
10
import torch
import codecs

11

Tian Qi Chen's avatar
Tian Qi Chen committed
12
class MNIST(data.Dataset):
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where ``processed/training.pt``
            and  ``processed/test.pt`` exist.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
Tian Qi Chen's avatar
Tian Qi Chen committed
28
29
30
31
32
33
34
35
36
37
38
39
    urls = [
        'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',
    ]
    raw_folder = 'raw'
    processed_folder = 'processed'
    training_file = 'training.pt'
    test_file = 'test.pt'

    def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
40
        self.root = os.path.expanduser(root)
Tian Qi Chen's avatar
Tian Qi Chen committed
41
42
        self.transform = transform
        self.target_transform = target_transform
43
        self.train = train  # training set or test set
Tian Qi Chen's avatar
Tian Qi Chen committed
44
45
46
47
48

        if download:
            self.download()

        if not self._check_exists():
49
50
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')
Tian Qi Chen's avatar
Tian Qi Chen committed
51
52

        if self.train:
53
            self.train_data, self.train_labels = torch.load(
moskomule's avatar
moskomule committed
54
                os.path.join(self.root, self.processed_folder, self.training_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
55
        else:
Mikhail Korobov's avatar
Mikhail Korobov committed
56
57
            self.test_data, self.test_labels = torch.load(
                os.path.join(self.root, self.processed_folder, self.test_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
58
59

    def __getitem__(self, index):
60
61
62
63
64
65
66
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
Tian Qi Chen's avatar
Tian Qi Chen committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        if self.train:
            img, target = self.train_data[index], self.train_labels[index]
        else:
            img, target = self.test_data[index], self.test_labels[index]

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        if self.train:
Keon's avatar
Keon committed
86
            return len(self.train_data)
Tian Qi Chen's avatar
Tian Qi Chen committed
87
        else:
Keon's avatar
Keon committed
88
            return len(self.test_data)
Tian Qi Chen's avatar
Tian Qi Chen committed
89
90
91

    def _check_exists(self):
        return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \
92
            os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
93
94

    def download(self):
95
        """Download the MNIST data if it doesn't exist in processed_folder already."""
Tian Qi Chen's avatar
Tian Qi Chen committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        from six.moves import urllib
        import gzip

        if self._check_exists():
            return

        # download files
        try:
            os.makedirs(os.path.join(self.root, self.raw_folder))
            os.makedirs(os.path.join(self.root, self.processed_folder))
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        for url in self.urls:
            print('Downloading ' + url)
            data = urllib.request.urlopen(url)
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.root, self.raw_folder, filename)
            with open(file_path, 'wb') as f:
                f.write(data.read())
            with open(file_path.replace('.gz', ''), 'wb') as out_f, \
120
                    gzip.GzipFile(file_path) as zip_f:
Tian Qi Chen's avatar
Tian Qi Chen committed
121
122
123
124
                out_f.write(zip_f.read())
            os.unlink(file_path)

        # process and save as torch files
Adam Paszke's avatar
Adam Paszke committed
125
126
        print('Processing...')

Tian Qi Chen's avatar
Tian Qi Chen committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        training_set = (
            read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')),
            read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte'))
        )
        test_set = (
            read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')),
            read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte'))
        )
        with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f:
            torch.save(training_set, f)
        with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f:
            torch.save(test_set, f)

        print('Done!')

142
143
144
145
146
147
148
149
150
151
152
153
    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        tmp = 'train' if self.train is True else 'test'
        fmt_str += '    Split: {}\n'.format(tmp)
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str

154

155
class FashionMNIST(MNIST):
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
        root (string): Root directory of dataset where ``processed/training.pt``
            and  ``processed/test.pt`` exist.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
170
171
172
173
174
175
176
177
178
    """
    urls = [
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz',
    ]


179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
class EMNIST(MNIST):
    """`EMNIST <https://www.nist.gov/itl/iad/image-group/emnist-dataset/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where ``processed/training.pt``
            and  ``processed/test.pt`` exist.
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
198
    url = 'http://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip'
199
200
201
202
203
204
205
206
207
208
209
    splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist')

    def __init__(self, root, split, **kwargs):
        if split not in self.splits:
            raise ValueError('Split "{}" not found. Valid splits are: {}'.format(
                split, ', '.join(self.splits),
            ))
        self.split = split
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super(EMNIST, self).__init__(root, **kwargs)
Tian Qi Chen's avatar
Tian Qi Chen committed
210

211
212
213
214
215
216
217
218
219
220
221
222
    def _training_file(self, split):
        return 'training_{}.pt'.format(split)

    def _test_file(self, split):
        return 'test_{}.pt'.format(split)

    def download(self):
        """Download the EMNIST data if it doesn't exist in processed_folder already."""
        from six.moves import urllib
        import gzip
        import shutil
        import zipfile
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        if self._check_exists():
            return

        # download files
        try:
            os.makedirs(os.path.join(self.root, self.raw_folder))
            os.makedirs(os.path.join(self.root, self.processed_folder))
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        print('Downloading ' + self.url)
        data = urllib.request.urlopen(self.url)
        filename = self.url.rpartition('/')[2]
        raw_folder = os.path.join(self.root, self.raw_folder)
        file_path = os.path.join(raw_folder, filename)
        with open(file_path, 'wb') as f:
            f.write(data.read())

        print('Extracting zip archive')
        with zipfile.ZipFile(file_path) as zip_f:
            zip_f.extractall(raw_folder)
        os.unlink(file_path)
        gzip_folder = os.path.join(raw_folder, 'gzip')
        for gzip_file in os.listdir(gzip_folder):
            if gzip_file.endswith('.gz'):
                print('Extracting ' + gzip_file)
                with open(os.path.join(raw_folder, gzip_file.replace('.gz', '')), 'wb') as out_f, \
                        gzip.GzipFile(os.path.join(gzip_folder, gzip_file)) as zip_f:
                    out_f.write(zip_f.read())
        shutil.rmtree(gzip_folder)

        # process and save as torch files
        for split in self.splits:
            print('Processing ' + split)
            training_set = (
                read_image_file(os.path.join(raw_folder, 'emnist-{}-train-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(raw_folder, 'emnist-{}-train-labels-idx1-ubyte'.format(split)))
            )
            test_set = (
                read_image_file(os.path.join(raw_folder, 'emnist-{}-test-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(raw_folder, 'emnist-{}-test-labels-idx1-ubyte'.format(split)))
            )
            with open(os.path.join(self.root, self.processed_folder, self._training_file(split)), 'wb') as f:
                torch.save(training_set, f)
            with open(os.path.join(self.root, self.processed_folder, self._test_file(split)), 'wb') as f:
                torch.save(test_set, f)

        print('Done!')


def get_int(b):
    return int(codecs.encode(b, 'hex'), 16)
Tian Qi Chen's avatar
Tian Qi Chen committed
279

280

Tian Qi Chen's avatar
Tian Qi Chen committed
281
282
283
284
285
def read_label_file(path):
    with open(path, 'rb') as f:
        data = f.read()
        assert get_int(data[:4]) == 2049
        length = get_int(data[4:8])
286
287
        parsed = np.frombuffer(data, dtype=np.uint8, offset=8)
        return torch.from_numpy(parsed).view(length).long()
Tian Qi Chen's avatar
Tian Qi Chen committed
288

289

Tian Qi Chen's avatar
Tian Qi Chen committed
290
291
292
293
294
295
296
297
def read_image_file(path):
    with open(path, 'rb') as f:
        data = f.read()
        assert get_int(data[:4]) == 2051
        length = get_int(data[4:8])
        num_rows = get_int(data[8:12])
        num_cols = get_int(data[12:16])
        images = []
298
299
        parsed = np.frombuffer(data, dtype=np.uint8, offset=16)
        return torch.from_numpy(parsed).view(length, num_rows, num_cols)