mnist.py 20.1 KB
Newer Older
1
from .vision import VisionDataset
2
import warnings
Tian Qi Chen's avatar
Tian Qi Chen committed
3
4
5
from PIL import Image
import os
import os.path
6
import numpy as np
Tian Qi Chen's avatar
Tian Qi Chen committed
7
8
import torch
import codecs
9
import string
10
from typing import Any, Callable, Dict, List, Optional, Tuple
11
from urllib.error import URLError
12
13
from .utils import download_and_extract_archive, extract_archive, verify_str_arg, check_integrity
import shutil
Tian Qi Chen's avatar
Tian Qi Chen committed
14

15

16
class MNIST(VisionDataset):
17
18
19
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
20
21
        root (string): Root directory of dataset where ``MNIST/processed/training.pt``
            and  ``MNIST/processed/test.pt`` exist.
22
23
24
25
26
27
28
29
30
31
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
32

33
34
35
36
37
    mirrors = [
        'http://yann.lecun.com/exdb/mnist/',
        'https://ossci-datasets.s3.amazonaws.com/mnist/',
    ]

38
    resources = [
39
40
41
42
        ("train-images-idx3-ubyte.gz", "f68b3c2dcbeaaa9fbdd348bbdeb94873"),
        ("train-labels-idx1-ubyte.gz", "d53e105ee54ea40749a09fcbcd1e9432"),
        ("t10k-images-idx3-ubyte.gz", "9fb629c4189551a2d022fa330f9573f3"),
        ("t10k-labels-idx1-ubyte.gz", "ec29112dd5afa0611ce80d1b7f02629c")
Tian Qi Chen's avatar
Tian Qi Chen committed
43
    ]
44

45
46
    training_file = 'training.pt'
    test_file = 'test.pt'
47
48
49
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    @property
    def train_labels(self):
        warnings.warn("train_labels has been renamed targets")
        return self.targets

    @property
    def test_labels(self):
        warnings.warn("test_labels has been renamed targets")
        return self.targets

    @property
    def train_data(self):
        warnings.warn("train_data has been renamed data")
        return self.data

    @property
    def test_data(self):
        warnings.warn("test_data has been renamed data")
        return self.data

70
71
72
73
74
75
76
77
    def __init__(
            self,
            root: str,
            train: bool = True,
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
            download: bool = False,
    ) -> None:
78
79
        super(MNIST, self).__init__(root, transform=transform,
                                    target_transform=target_transform)
80
        torch._C._log_api_usage_once(f"torchvision.datasets.{self.__class__.__name__}")
81
        self.train = train  # training set or test set
Tian Qi Chen's avatar
Tian Qi Chen committed
82

83
84
85
86
        if self._check_legacy_exist():
            self.data, self.targets = self._load_legacy_data()
            return

Tian Qi Chen's avatar
Tian Qi Chen committed
87
88
89
90
        if download:
            self.download()

        if not self._check_exists():
91
92
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')
Tian Qi Chen's avatar
Tian Qi Chen committed
93

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        self.data, self.targets = self._load_data()

    def _check_legacy_exist(self):
        processed_folder_exists = os.path.exists(self.processed_folder)
        if not processed_folder_exists:
            return False

        return all(
            check_integrity(os.path.join(self.processed_folder, file)) for file in (self.training_file, self.test_file)
        )

    def _load_legacy_data(self):
        # This is for BC only. We no longer cache the data in a custom binary, but simply read from the raw data
        # directly.
        data_file = self.training_file if self.train else self.test_file
        return torch.load(os.path.join(self.processed_folder, data_file))

    def _load_data(self):
        image_file = f"{'train' if self.train else 't10k'}-images-idx3-ubyte"
        data = read_image_file(os.path.join(self.raw_folder, image_file))

        label_file = f"{'train' if self.train else 't10k'}-labels-idx1-ubyte"
        targets = read_label_file(os.path.join(self.raw_folder, label_file))

        return data, targets
Tian Qi Chen's avatar
Tian Qi Chen committed
119

120
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
121
122
123
124
125
126
127
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
128
        img, target = self.data[index], int(self.targets[index])
Tian Qi Chen's avatar
Tian Qi Chen committed
129
130
131
132
133
134
135
136
137
138
139
140
141

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

142
    def __len__(self) -> int:
143
        return len(self.data)
Tian Qi Chen's avatar
Tian Qi Chen committed
144

145
    @property
146
    def raw_folder(self) -> str:
147
148
149
        return os.path.join(self.root, self.__class__.__name__, 'raw')

    @property
150
    def processed_folder(self) -> str:
151
152
153
        return os.path.join(self.root, self.__class__.__name__, 'processed')

    @property
154
    def class_to_idx(self) -> Dict[str, int]:
155
156
        return {_class: i for i, _class in enumerate(self.classes)}

157
    def _check_exists(self) -> bool:
158
159
160
161
        return all(
            check_integrity(os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0]))
            for url, _ in self.resources
        )
162

163
    def download(self) -> None:
164
        """Download the MNIST data if it doesn't exist already."""
Tian Qi Chen's avatar
Tian Qi Chen committed
165
166
167
168

        if self._check_exists():
            return

169
        os.makedirs(self.raw_folder, exist_ok=True)
Tian Qi Chen's avatar
Tian Qi Chen committed
170

171
        # download files
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        for filename, md5 in self.resources:
            for mirror in self.mirrors:
                url = "{}{}".format(mirror, filename)
                try:
                    print("Downloading {}".format(url))
                    download_and_extract_archive(
                        url, download_root=self.raw_folder,
                        filename=filename,
                        md5=md5
                    )
                except URLError as error:
                    print(
                        "Failed to download (trying next):\n{}".format(error)
                    )
                    continue
                finally:
                    print()
                break
            else:
                raise RuntimeError("Error downloading {}".format(filename))
Tian Qi Chen's avatar
Tian Qi Chen committed
192

193
    def extra_repr(self) -> str:
194
        return "Split: {}".format("Train" if self.train is True else "Test")
195

196

197
class FashionMNIST(MNIST):
198
199
200
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
201
202
        root (string): Root directory of dataset where ``FashionMNIST/processed/training.pt``
            and  ``FashionMNIST/processed/test.pt`` exist.
203
204
205
206
207
208
209
210
211
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
212
    """
213
214
215
216
    mirrors = [
        "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/"
    ]

217
    resources = [
218
219
220
221
        ("train-images-idx3-ubyte.gz", "8d4fb7e6c68d591d4c3dfef9ec88bf0d"),
        ("train-labels-idx1-ubyte.gz", "25c81989df183df01b3e8a0aad5dffbe"),
        ("t10k-images-idx3-ubyte.gz", "bef4ecab320f06d8554ea6380940ec79"),
        ("t10k-labels-idx1-ubyte.gz", "bb300cfdad3c16e7a12a480ee83cd310")
222
    ]
223
224
    classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',
               'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
225
226


hysts's avatar
hysts committed
227
228
229
230
class KMNIST(MNIST):
    """`Kuzushiji-MNIST <https://github.com/rois-codh/kmnist>`_ Dataset.

    Args:
231
232
        root (string): Root directory of dataset where ``KMNIST/processed/training.pt``
            and  ``KMNIST/processed/test.pt`` exist.
hysts's avatar
hysts committed
233
234
235
236
237
238
239
240
241
242
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
243
244
245
246
    mirrors = [
        "http://codh.rois.ac.jp/kmnist/dataset/kmnist/"
    ]

247
    resources = [
248
249
250
251
        ("train-images-idx3-ubyte.gz", "bdb82020997e1d708af4cf47b453dcf7"),
        ("train-labels-idx1-ubyte.gz", "e144d726b3acfaa3e44228e80efcd344"),
        ("t10k-images-idx3-ubyte.gz", "5c965bf0a639b31b8f53240b1b52f4d7"),
        ("t10k-labels-idx1-ubyte.gz", "7320c461ea6c1c855c0b718fb2a4b134")
hysts's avatar
hysts committed
252
253
254
255
    ]
    classes = ['o', 'ki', 'su', 'tsu', 'na', 'ha', 'ma', 'ya', 're', 'wo']


256
class EMNIST(MNIST):
Alex Alemi's avatar
Alex Alemi committed
257
    """`EMNIST <https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist>`_ Dataset.
258
259

    Args:
260
261
        root (string): Root directory of dataset where ``EMNIST/processed/training.pt``
            and  ``EMNIST/processed/test.pt`` exist.
262
263
264
265
266
267
268
269
270
271
272
273
274
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
Philip Meier's avatar
Philip Meier committed
275
    url = 'https://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip'
276
    md5 = "58c8d27c78d21e728a6bc7b3cc06412e"
277
    splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist')
278
    # Merged Classes assumes Same structure for both uppercase and lowercase version
279
280
    _merged_classes = {'c', 'i', 'j', 'k', 'l', 'm', 'o', 'p', 's', 'u', 'v', 'w', 'x', 'y', 'z'}
    _all_classes = set(string.digits + string.ascii_letters)
281
    classes_split_dict = {
282
        'byclass': sorted(list(_all_classes)),
283
284
        'bymerge': sorted(list(_all_classes - _merged_classes)),
        'balanced': sorted(list(_all_classes - _merged_classes)),
285
        'letters': ['N/A'] + list(string.ascii_lowercase),
286
287
288
        'digits': list(string.digits),
        'mnist': list(string.digits),
    }
289

290
    def __init__(self, root: str, split: str, **kwargs: Any) -> None:
291
        self.split = verify_str_arg(split, "split", self.splits)
292
293
294
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super(EMNIST, self).__init__(root, **kwargs)
295
        self.classes = self.classes_split_dict[self.split]
Tian Qi Chen's avatar
Tian Qi Chen committed
296

297
    @staticmethod
298
    def _training_file(split) -> str:
299
300
        return 'training_{}.pt'.format(split)

301
    @staticmethod
302
    def _test_file(split) -> str:
303
304
        return 'test_{}.pt'.format(split)

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    @property
    def _file_prefix(self) -> str:
        return f"emnist-{self.split}-{'train' if self.train else 'test'}"

    @property
    def images_file(self) -> str:
        return os.path.join(self.raw_folder, f"{self._file_prefix}-images-idx3-ubyte")

    @property
    def labels_file(self) -> str:
        return os.path.join(self.raw_folder, f"{self._file_prefix}-labels-idx1-ubyte")

    def _load_data(self):
        return read_image_file(self.images_file), read_label_file(self.labels_file)

    def _check_exists(self) -> bool:
        return all(check_integrity(file) for file in (self.images_file, self.labels_file))

323
    def download(self) -> None:
324
        """Download the EMNIST data if it doesn't exist already."""
325

326
327
328
        if self._check_exists():
            return

329
        os.makedirs(self.raw_folder, exist_ok=True)
330

331
        download_and_extract_archive(self.url, download_root=self.raw_folder, md5=self.md5)
332
        gzip_folder = os.path.join(self.raw_folder, 'gzip')
333
334
        for gzip_file in os.listdir(gzip_folder):
            if gzip_file.endswith('.gz'):
335
                extract_archive(os.path.join(gzip_folder, gzip_file), self.raw_folder)
336
        shutil.rmtree(gzip_folder)
337
338


339
340
341
342
class QMNIST(MNIST):
    """`QMNIST <https://github.com/facebookresearch/qmnist>`_ Dataset.

    Args:
343
        root (string): Root directory of dataset whose ``processed``
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
            subdir contains torch binary files with the datasets.
        what (string,optional): Can be 'train', 'test', 'test10k',
            'test50k', or 'nist' for respectively the mnist compatible
            training set, the 60k qmnist testing set, the 10k qmnist
            examples that match the mnist testing set, the 50k
            remaining qmnist testing examples, or all the nist
            digits. The default is to select 'train' or 'test'
            according to the compatibility argument 'train'.
        compat (bool,optional): A boolean that says whether the target
            for each example is class number (for compatibility with
            the MNIST dataloader) or a torch vector containing the
            full qmnist information. Default=True.
        download (bool, optional): If true, downloads the dataset from
            the internet and puts it in root directory. If dataset is
            already downloaded, it is not downloaded again.
        transform (callable, optional): A function/transform that
            takes in an PIL image and returns a transformed
            version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform
            that takes in the target and transforms it.
        train (bool,optional,compatibility): When argument 'what' is
            not specified, this boolean decides whether to load the
            training set ot the testing set.  Default: True.
    """

    subsets = {
        'train': 'train',
371
372
373
        'test': 'test',
        'test10k': 'test',
        'test50k': 'test',
374
375
        'nist': 'nist'
    }
376
    resources: Dict[str, List[Tuple[str, str]]] = {  # type: ignore[assignment]
377
378
379
380
381
382
383
384
385
386
387
388
        'train': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-images-idx3-ubyte.gz',
                   'ed72d4157d28c017586c42bc6afe6370'),
                  ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-labels-idx2-int.gz',
                   '0058f8dd561b90ffdd0f734c6a30e5e4')],
        'test': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-images-idx3-ubyte.gz',
                  '1394631089c404de565df7b7aeaf9412'),
                 ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-labels-idx2-int.gz',
                  '5b5b05890a5e13444e108efe57b788aa')],
        'nist': [('https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-images-idx3-ubyte.xz',
                  '7f124b3b8ab81486c9d8c2749c17f834'),
                 ('https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-labels-idx2-int.xz',
                  '5ed0e788978e45d4a8bd4b7caec3d79d')]
389
390
391
392
    }
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

393
394
395
396
    def __init__(
            self, root: str, what: Optional[str] = None, compat: bool = True,
            train: bool = True, **kwargs: Any
    ) -> None:
397
398
        if what is None:
            what = 'train' if train else 'test'
399
        self.what = verify_str_arg(what, "what", tuple(self.subsets.keys()))
400
401
402
403
404
405
        self.compat = compat
        self.data_file = what + '.pt'
        self.training_file = self.data_file
        self.test_file = self.data_file
        super(QMNIST, self).__init__(root, train, **kwargs)

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    @property
    def images_file(self) -> str:
        (url, _), _ = self.resources[self.subsets[self.what]]
        return os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0])

    @property
    def labels_file(self) -> str:
        _, (url, _) = self.resources[self.subsets[self.what]]
        return os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0])

    def _check_exists(self) -> bool:
        return all(check_integrity(file) for file in (self.images_file, self.labels_file))

    def _load_data(self):
        data = read_sn3_pascalvincent_tensor(self.images_file)
        assert (data.dtype == torch.uint8)
        assert (data.ndimension() == 3)

        targets = read_sn3_pascalvincent_tensor(self.labels_file).long()
        assert (targets.ndimension() == 2)

        if self.what == 'test10k':
            data = data[0:10000, :, :].clone()
            targets = targets[0:10000, :].clone()
        elif self.what == 'test50k':
            data = data[10000:, :, :].clone()
            targets = targets[10000:, :].clone()

        return data, targets

436
    def download(self) -> None:
437
        """Download the QMNIST data if it doesn't exist already.
438
439
440
441
           Note that we only download what has been asked for (argument 'what').
        """
        if self._check_exists():
            return
442

443
        os.makedirs(self.raw_folder, exist_ok=True)
444
        split = self.resources[self.subsets[self.what]]
445

446
        for url, md5 in split:
447
448
449
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.raw_folder, filename)
            if not os.path.isfile(file_path):
450
                download_and_extract_archive(url, self.raw_folder, filename=filename, md5=md5)
451

452
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
453
454
455
456
457
458
459
460
461
462
463
        # redefined to handle the compat flag
        img, target = self.data[index], self.targets[index]
        img = Image.fromarray(img.numpy(), mode='L')
        if self.transform is not None:
            img = self.transform(img)
        if self.compat:
            target = int(target[0])
        if self.target_transform is not None:
            target = self.target_transform(target)
        return img, target

464
    def extra_repr(self) -> str:
465
466
467
        return "Split: {}".format(self.what)


468
def get_int(b: bytes) -> int:
469
    return int(codecs.encode(b, 'hex'), 16)
Tian Qi Chen's avatar
Tian Qi Chen committed
470

471

472
473
474
475
476
477
478
479
480
481
SN3_PASCALVINCENT_TYPEMAP = {
    8: (torch.uint8, np.uint8, np.uint8),
    9: (torch.int8, np.int8, np.int8),
    11: (torch.int16, np.dtype('>i2'), 'i2'),
    12: (torch.int32, np.dtype('>i4'), 'i4'),
    13: (torch.float32, np.dtype('>f4'), 'f4'),
    14: (torch.float64, np.dtype('>f8'), 'f8')
}


482
def read_sn3_pascalvincent_tensor(path: str, strict: bool = True) -> torch.Tensor:
483
484
485
486
    """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
       Argument may be a filename, compressed filename, or file object.
    """
    # read
487
    with open(path, "rb") as f:
488
489
490
491
492
        data = f.read()
    # parse
    magic = get_int(data[0:4])
    nd = magic % 256
    ty = magic // 256
493
494
    assert 1 <= nd <= 3
    assert 8 <= ty <= 14
495
    m = SN3_PASCALVINCENT_TYPEMAP[ty]
496
497
498
499
500
501
    s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
    parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
    assert parsed.shape[0] == np.prod(s) or not strict
    return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)


502
def read_label_file(path: str) -> torch.Tensor:
503
    x = read_sn3_pascalvincent_tensor(path, strict=False)
504
505
506
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 1)
    return x.long()
Tian Qi Chen's avatar
Tian Qi Chen committed
507

508

509
def read_image_file(path: str) -> torch.Tensor:
510
    x = read_sn3_pascalvincent_tensor(path, strict=False)
511
512
513
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 3)
    return x