test_transforms_v2.py 43.6 KB
Newer Older
1
2
import itertools
import pathlib
3
import pickle
4
5
6
7
8
9
10
11
12
13
import random
import warnings

import numpy as np

import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms

14
from common_utils import assert_equal, cpu_and_cuda
15
from torch.utils._pytree import tree_flatten, tree_unflatten
16
from torchvision import tv_tensors
17
18
19
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.v2 import functional as F
Nicolas Hug's avatar
Nicolas Hug committed
20
from torchvision.transforms.v2._utils import check_type, is_pure_tensor, query_chw
21
from transforms_v2_legacy_utils import (
22
23
24
25
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
26
    make_multiple_bounding_boxes,
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    make_segmentation_mask,
    make_video,
    make_videos,
)


def make_vanilla_tensor_images(*args, **kwargs):
    for image in make_images(*args, **kwargs):
        if image.ndim > 3:
            continue
        yield image.data


def make_pil_images(*args, **kwargs):
    for image in make_vanilla_tensor_images(*args, **kwargs):
        yield to_pil_image(image)


def make_vanilla_tensor_bounding_boxes(*args, **kwargs):
46
    for bounding_boxes in make_multiple_bounding_boxes(*args, **kwargs):
47
        yield bounding_boxes.data
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68


def parametrize(transforms_with_inputs):
    return pytest.mark.parametrize(
        ("transform", "input"),
        [
            pytest.param(
                transform,
                input,
                id=f"{type(transform).__name__}-{type(input).__module__}.{type(input).__name__}-{idx}",
            )
            for transform, inputs in transforms_with_inputs
            for idx, input in enumerate(inputs)
        ],
    )


def auto_augment_adapter(transform, input, device):
    adapted_input = {}
    image_or_video_found = False
    for key, value in input.items():
69
        if isinstance(value, (tv_tensors.BoundingBoxes, tv_tensors.Mask)):
70
71
            # AA transforms don't support bounding boxes or masks
            continue
72
        elif check_type(value, (tv_tensors.Image, tv_tensors.Video, is_pure_tensor, PIL.Image.Image)):
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            if image_or_video_found:
                # AA transforms only support a single image or video
                continue
            image_or_video_found = True
        adapted_input[key] = value
    return adapted_input


def linear_transformation_adapter(transform, input, device):
    flat_inputs = list(input.values())
    c, h, w = query_chw(
        [
            item
            for item, needs_transform in zip(flat_inputs, transforms.Transform()._needs_transform_list(flat_inputs))
            if needs_transform
        ]
    )
    num_elements = c * h * w
    transform.transformation_matrix = torch.randn((num_elements, num_elements), device=device)
    transform.mean_vector = torch.randn((num_elements,), device=device)
    return {key: value for key, value in input.items() if not isinstance(value, PIL.Image.Image)}


def normalize_adapter(transform, input, device):
    adapted_input = {}
    for key, value in input.items():
        if isinstance(value, PIL.Image.Image):
            # normalize doesn't support PIL images
            continue
102
        elif check_type(value, (tv_tensors.Image, tv_tensors.Video, is_pure_tensor)):
103
            # normalize doesn't support integer images
104
            value = F.to_dtype(value, torch.float32, scale=True)
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        adapted_input[key] = value
    return adapted_input


class TestSmoke:
    @pytest.mark.parametrize(
        ("transform", "adapter"),
        [
            (transforms.RandomErasing(p=1.0), None),
            (transforms.AugMix(), auto_augment_adapter),
            (transforms.AutoAugment(), auto_augment_adapter),
            (transforms.RandAugment(), auto_augment_adapter),
            (transforms.TrivialAugmentWide(), auto_augment_adapter),
            (transforms.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.3, hue=0.15), None),
            (transforms.Grayscale(), None),
            (transforms.RandomAdjustSharpness(sharpness_factor=0.5, p=1.0), None),
            (transforms.RandomAutocontrast(p=1.0), None),
            (transforms.RandomEqualize(p=1.0), None),
            (transforms.RandomGrayscale(p=1.0), None),
            (transforms.RandomInvert(p=1.0), None),
125
            (transforms.RandomChannelPermutation(), None),
126
127
128
129
130
131
132
133
134
135
            (transforms.RandomPhotometricDistort(p=1.0), None),
            (transforms.RandomPosterize(bits=4, p=1.0), None),
            (transforms.RandomSolarize(threshold=0.5, p=1.0), None),
            (transforms.CenterCrop([16, 16]), None),
            (transforms.ElasticTransform(sigma=1.0), None),
            (transforms.Pad(4), None),
            (transforms.RandomAffine(degrees=30.0), None),
            (transforms.RandomCrop([16, 16], pad_if_needed=True), None),
            (transforms.RandomHorizontalFlip(p=1.0), None),
            (transforms.RandomPerspective(p=1.0), None),
136
137
            (transforms.RandomResize(min_size=10, max_size=20, antialias=True), None),
            (transforms.RandomResizedCrop([16, 16], antialias=True), None),
138
            (transforms.RandomRotation(degrees=30), None),
139
            (transforms.RandomShortestSize(min_size=10, antialias=True), None),
140
141
142
            (transforms.RandomVerticalFlip(p=1.0), None),
            (transforms.RandomZoomOut(p=1.0), None),
            (transforms.Resize([16, 16], antialias=True), None),
143
            (transforms.ScaleJitter((16, 16), scale_range=(0.8, 1.2), antialias=True), None),
144
            (transforms.ClampBoundingBoxes(), None),
145
            (transforms.ConvertBoundingBoxFormat(tv_tensors.BoundingBoxFormat.CXCYWH), None),
146
            (transforms.ConvertImageDtype(), None),
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            (transforms.GaussianBlur(kernel_size=3), None),
            (
                transforms.LinearTransformation(
                    # These are just dummy values that will be filled by the adapter. We can't define them upfront,
                    # because for we neither know the spatial size nor the device at this point
                    transformation_matrix=torch.empty((1, 1)),
                    mean_vector=torch.empty((1,)),
                ),
                linear_transformation_adapter,
            ),
            (transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), normalize_adapter),
            (transforms.ToDtype(torch.float64), None),
            (transforms.UniformTemporalSubsample(num_samples=2), None),
        ],
        ids=lambda transform: type(transform).__name__,
    )
    @pytest.mark.parametrize("container_type", [dict, list, tuple])
    @pytest.mark.parametrize(
        "image_or_video",
        [
            make_image(),
            make_video(),
            next(make_pil_images(color_spaces=["RGB"])),
            next(make_vanilla_tensor_images()),
        ],
    )
173
    @pytest.mark.parametrize("de_serialize", [lambda t: t, lambda t: pickle.loads(pickle.dumps(t))])
174
    @pytest.mark.parametrize("device", cpu_and_cuda())
175
176
177
    def test_common(self, transform, adapter, container_type, image_or_video, de_serialize, device):
        transform = de_serialize(transform)

Philip Meier's avatar
Philip Meier committed
178
        canvas_size = F.get_size(image_or_video)
179
180
        input = dict(
            image_or_video=image_or_video,
181
182
            image_tv_tensor=make_image(size=canvas_size),
            video_tv_tensor=make_video(size=canvas_size),
Philip Meier's avatar
Philip Meier committed
183
            image_pil=next(make_pil_images(sizes=[canvas_size], color_spaces=["RGB"])),
184
            bounding_boxes_xyxy=make_bounding_boxes(
185
                format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size, batch_dims=(3,)
186
            ),
187
            bounding_boxes_xywh=make_bounding_boxes(
188
                format=tv_tensors.BoundingBoxFormat.XYWH, canvas_size=canvas_size, batch_dims=(4,)
189
            ),
190
            bounding_boxes_cxcywh=make_bounding_boxes(
191
                format=tv_tensors.BoundingBoxFormat.CXCYWH, canvas_size=canvas_size, batch_dims=(5,)
192
            ),
193
            bounding_boxes_degenerate_xyxy=tv_tensors.BoundingBoxes(
194
195
196
197
198
199
200
201
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [2, 0, 1, 1],  # x1 > x2, y1 < y2
                    [0, 2, 1, 1],  # x1 < x2, y1 > y2
                    [2, 2, 1, 1],  # x1 > x2, y1 > y2
                ],
202
                format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
203
                canvas_size=canvas_size,
204
            ),
205
            bounding_boxes_degenerate_xywh=tv_tensors.BoundingBoxes(
206
207
208
209
210
211
212
213
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
214
                format=tv_tensors.BoundingBoxFormat.XYWH,
Philip Meier's avatar
Philip Meier committed
215
                canvas_size=canvas_size,
216
            ),
217
            bounding_boxes_degenerate_cxcywh=tv_tensors.BoundingBoxes(
218
219
220
221
222
223
224
225
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
226
                format=tv_tensors.BoundingBoxFormat.CXCYWH,
Philip Meier's avatar
Philip Meier committed
227
                canvas_size=canvas_size,
228
            ),
Philip Meier's avatar
Philip Meier committed
229
230
            detection_mask=make_detection_mask(size=canvas_size),
            segmentation_mask=make_segmentation_mask(size=canvas_size),
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            int=0,
            float=0.0,
            bool=True,
            none=None,
            str="str",
            path=pathlib.Path.cwd(),
            object=object(),
            tensor=torch.empty(5),
            array=np.empty(5),
        )
        if adapter is not None:
            input = adapter(transform, input, device)

        if container_type in {tuple, list}:
            input = container_type(input.values())

        input_flat, input_spec = tree_flatten(input)
        input_flat = [item.to(device) if isinstance(item, torch.Tensor) else item for item in input_flat]
        input = tree_unflatten(input_flat, input_spec)

        torch.manual_seed(0)
        output = transform(input)
        output_flat, output_spec = tree_flatten(output)

        assert output_spec == input_spec

        for output_item, input_item, should_be_transformed in zip(
            output_flat, input_flat, transforms.Transform()._needs_transform_list(input_flat)
        ):
            if should_be_transformed:
                assert type(output_item) is type(input_item)
            else:
                assert output_item is input_item

265
            if isinstance(input_item, tv_tensors.BoundingBoxes) and not isinstance(
266
267
268
269
270
271
272
                transform, transforms.ConvertBoundingBoxFormat
            ):
                assert output_item.format == input_item.format

        # Enforce that the transform does not turn a degenerate box marked by RandomIoUCrop (or any other future
        # transform that does this), back into a valid one.
        # TODO: we should test that against all degenerate boxes above
273
        for format in list(tv_tensors.BoundingBoxFormat):
274
            sample = dict(
275
                boxes=tv_tensors.BoundingBoxes([[0, 0, 0, 0]], format=format, canvas_size=(224, 244)),
276
277
                labels=torch.tensor([3]),
            )
278
            assert transforms.SanitizeBoundingBoxes()(sample)["boxes"].shape == (0, 4)
279
280
281
282
283
284
285
286
287
288
289
290
291

    @parametrize(
        [
            (
                transform,
                itertools.chain.from_iterable(
                    fn(
                        color_spaces=[
                            "GRAY",
                            "RGB",
                        ],
                        dtypes=[torch.uint8],
                        extra_dims=[(), (4,)],
292
                        **(dict(num_frames=[3]) if fn is make_videos else dict()),
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
                    )
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_pil_images,
                        make_videos,
                    ]
                ),
            )
            for transform in (
                transforms.RandAugment(),
                transforms.TrivialAugmentWide(),
                transforms.AutoAugment(),
                transforms.AugMix(),
            )
        ]
    )
    def test_auto_augment(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0]),
                itertools.chain.from_iterable(
                    fn(color_spaces=["RGB"], dtypes=[torch.float32])
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_videos,
                    ]
                ),
            ),
        ]
    )
    def test_normalize(self, transform, input):
        transform(input)


@pytest.mark.parametrize(
    "flat_inputs",
    itertools.permutations(
        [
            next(make_vanilla_tensor_images()),
            next(make_vanilla_tensor_images()),
            next(make_pil_images()),
            make_image(),
            next(make_videos()),
        ],
        3,
    ),
)
345
346
def test_pure_tensor_heuristic(flat_inputs):
    def split_on_pure_tensor(to_split):
347
        # This takes a sequence that is structurally aligned with `flat_inputs` and splits its items into three parts:
348
349
        # 1. The first pure tensor. If none is present, this will be `None`
        # 2. A list of the remaining pure tensors
350
        # 3. A list of all other items
351
        pure_tensors = []
352
353
354
355
        others = []
        # Splitting always happens on the original `flat_inputs` to avoid any erroneous type changes by the transform to
        # affect the splitting.
        for item, inpt in zip(to_split, flat_inputs):
356
357
            (pure_tensors if is_pure_tensor(inpt) else others).append(item)
        return pure_tensors[0] if pure_tensors else None, pure_tensors[1:], others
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

    class CopyCloneTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt.clone() if isinstance(inpt, torch.Tensor) else inpt.copy()

        @staticmethod
        def was_applied(output, inpt):
            identity = output is inpt
            if identity:
                return False

            # Make sure nothing fishy is going on
            assert_equal(output, inpt)
            return True

373
    first_pure_tensor_input, other_pure_tensor_inputs, other_inputs = split_on_pure_tensor(flat_inputs)
374
375
376
377

    transform = CopyCloneTransform()
    transformed_sample = transform(flat_inputs)

378
    first_pure_tensor_output, other_pure_tensor_outputs, other_outputs = split_on_pure_tensor(transformed_sample)
379

380
    if first_pure_tensor_input is not None:
381
        if other_inputs:
382
            assert not transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
383
        else:
384
            assert transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
385

386
    for output, inpt in zip(other_pure_tensor_outputs, other_pure_tensor_inputs):
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        assert not transform.was_applied(output, inpt)

    for input, output in zip(other_inputs, other_outputs):
        assert transform.was_applied(output, input)


class TestPad:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.Pad("abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.Pad([-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.Pad(12, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.Pad(12, padding_mode="abc")


class TestRandomZoomOut:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomZoomOut(fill="abc")

        with pytest.raises(TypeError, match="should be a sequence of length"):
            transforms.RandomZoomOut(0, side_range=0)

        with pytest.raises(ValueError, match="Invalid canvas side range"):
            transforms.RandomZoomOut(0, side_range=[4.0, 1.0])

    @pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
    @pytest.mark.parametrize("side_range", [(1.0, 4.0), [2.0, 5.0]])
Philip Meier's avatar
Philip Meier committed
421
    def test__get_params(self, fill, side_range):
422
423
        transform = transforms.RandomZoomOut(fill=fill, side_range=side_range)

Philip Meier's avatar
Philip Meier committed
424
425
        h, w = size = (24, 32)
        image = make_image(size)
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

        params = transform._get_params([image])

        assert len(params["padding"]) == 4
        assert 0 <= params["padding"][0] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][1] <= (side_range[1] - 1) * h
        assert 0 <= params["padding"][2] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][3] <= (side_range[1] - 1) * h


class TestRandomPerspective:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Argument distortion_scale value should be between 0 and 1"):
            transforms.RandomPerspective(distortion_scale=-1.0)

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomPerspective(0.5, fill="abc")

Philip Meier's avatar
Philip Meier committed
444
    def test__get_params(self):
445
446
        dscale = 0.5
        transform = transforms.RandomPerspective(dscale)
Philip Meier's avatar
Philip Meier committed
447
448

        image = make_image((24, 32))
449
450
451
452
453
454
455
456
457
458

        params = transform._get_params([image])

        assert "coefficients" in params
        assert len(params["coefficients"]) == 8


class TestElasticTransform:
    def test_assertions(self):

459
        with pytest.raises(TypeError, match="alpha should be a number or a sequence of numbers"):
460
461
            transforms.ElasticTransform({})

462
        with pytest.raises(ValueError, match="alpha is a sequence its length should be 1 or 2"):
463
464
            transforms.ElasticTransform([1.0, 2.0, 3.0])

465
        with pytest.raises(TypeError, match="sigma should be a number or a sequence of numbers"):
466
467
            transforms.ElasticTransform(1.0, {})

468
        with pytest.raises(ValueError, match="sigma is a sequence its length should be 1 or 2"):
469
470
471
472
473
            transforms.ElasticTransform(1.0, [1.0, 2.0, 3.0])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.ElasticTransform(1.0, 2.0, fill="abc")

Philip Meier's avatar
Philip Meier committed
474
    def test__get_params(self):
475
476
477
        alpha = 2.0
        sigma = 3.0
        transform = transforms.ElasticTransform(alpha, sigma)
Philip Meier's avatar
Philip Meier committed
478
479
480

        h, w = size = (24, 32)
        image = make_image(size)
481
482
483
484
485
486
487
488
489
490
491
492

        params = transform._get_params([image])

        displacement = params["displacement"]
        assert displacement.shape == (1, h, w, 2)
        assert (-alpha / w <= displacement[0, ..., 0]).all() and (displacement[0, ..., 0] <= alpha / w).all()
        assert (-alpha / h <= displacement[0, ..., 1]).all() and (displacement[0, ..., 1] <= alpha / h).all()


class TestTransform:
    @pytest.mark.parametrize(
        "inpt_type",
493
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
494
495
496
497
498
499
500
501
502
503
504
505
506
507
    )
    def test_check_transformed_types(self, inpt_type, mocker):
        # This test ensures that we correctly handle which types to transform and which to bypass
        t = transforms.Transform()
        inpt = mocker.MagicMock(spec=inpt_type)

        if inpt_type in (np.ndarray, str, int):
            output = t(inpt)
            assert output is inpt
        else:
            with pytest.raises(NotImplementedError):
                t(inpt)


508
class TestToImage:
509
510
    @pytest.mark.parametrize(
        "inpt_type",
511
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
512
513
514
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch(
515
            "torchvision.transforms.v2.functional.to_image",
516
517
518
519
            return_value=torch.rand(1, 3, 8, 8),
        )

        inpt = mocker.MagicMock(spec=inpt_type)
520
        transform = transforms.ToImage()
521
        transform(inpt)
522
        if inpt_type in (tv_tensors.BoundingBoxes, tv_tensors.Image, str, int):
523
524
525
526
527
528
529
530
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestToPILImage:
    @pytest.mark.parametrize(
        "inpt_type",
531
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
532
533
    )
    def test__transform(self, inpt_type, mocker):
534
        fn = mocker.patch("torchvision.transforms.v2.functional.to_pil_image")
535
536
537
538

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToPILImage()
        transform(inpt)
539
        if inpt_type in (PIL.Image.Image, tv_tensors.BoundingBoxes, str, int):
540
541
542
543
544
545
546
547
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt, mode=transform.mode)


class TestToTensor:
    @pytest.mark.parametrize(
        "inpt_type",
548
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
549
550
551
552
553
554
555
556
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.functional.to_tensor")

        inpt = mocker.MagicMock(spec=inpt_type)
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            transform = transforms.ToTensor()
        transform(inpt)
557
        if inpt_type in (tv_tensors.Image, torch.Tensor, tv_tensors.BoundingBoxes, str, int):
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestContainers:
    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    def test_assertions(self, transform_cls):
        with pytest.raises(TypeError, match="Argument transforms should be a sequence of callables"):
            transform_cls(transforms.RandomCrop(28))

    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    @pytest.mark.parametrize(
        "trfms",
        [
            [transforms.Pad(2), transforms.RandomCrop(28)],
            [lambda x: 2.0 * x, transforms.Pad(2), transforms.RandomCrop(28)],
            [transforms.Pad(2), lambda x: 2.0 * x, transforms.RandomCrop(28)],
        ],
    )
    def test_ctor(self, transform_cls, trfms):
        c = transform_cls(trfms)
        inpt = torch.rand(1, 3, 32, 32)
        output = c(inpt)
        assert isinstance(output, torch.Tensor)
        assert output.ndim == 4


class TestRandomChoice:
    def test_assertions(self):
588
        with pytest.raises(ValueError, match="Length of p doesn't match the number of transforms"):
589
            transforms.RandomChoice([transforms.Pad(2), transforms.RandomCrop(28)], p=[1])
590
591
592


class TestRandomIoUCrop:
593
    @pytest.mark.parametrize("device", cpu_and_cuda())
594
    @pytest.mark.parametrize("options", [[0.5, 0.9], [2.0]])
Philip Meier's avatar
Philip Meier committed
595
596
597
    def test__get_params(self, device, options):
        orig_h, orig_w = size = (24, 32)
        image = make_image(size)
598
        bboxes = tv_tensors.BoundingBoxes(
599
600
            torch.tensor([[1, 1, 10, 10], [20, 20, 23, 23], [1, 20, 10, 23], [20, 1, 23, 10]]),
            format="XYXY",
Philip Meier's avatar
Philip Meier committed
601
            canvas_size=size,
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
            device=device,
        )
        sample = [image, bboxes]

        transform = transforms.RandomIoUCrop(sampler_options=options)

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params(sample)

            if options == [2.0]:
                assert len(params) == 0
                return

            assert len(params["is_within_crop_area"]) > 0
            assert params["is_within_crop_area"].dtype == torch.bool

            assert int(transform.min_scale * orig_h) <= params["height"] <= int(transform.max_scale * orig_h)
            assert int(transform.min_scale * orig_w) <= params["width"] <= int(transform.max_scale * orig_w)

            left, top = params["left"], params["top"]
            new_h, new_w = params["height"], params["width"]
            ious = box_iou(
                bboxes,
                torch.tensor([[left, top, left + new_w, top + new_h]], dtype=bboxes.dtype, device=bboxes.device),
            )
            assert ious.max() >= options[0] or ious.max() >= options[1], f"{ious} vs {options}"

    def test__transform_empty_params(self, mocker):
        transform = transforms.RandomIoUCrop(sampler_options=[2.0])
633
634
        image = tv_tensors.Image(torch.rand(1, 3, 4, 4))
        bboxes = tv_tensors.BoundingBoxes(torch.tensor([[1, 1, 2, 2]]), format="XYXY", canvas_size=(4, 4))
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
        label = torch.tensor([1])
        sample = [image, bboxes, label]
        # Let's mock transform._get_params to control the output:
        transform._get_params = mocker.MagicMock(return_value={})
        output = transform(sample)
        torch.testing.assert_close(output, sample)

    def test_forward_assertion(self):
        transform = transforms.RandomIoUCrop()
        with pytest.raises(
            TypeError,
            match="requires input sample to contain tensor or PIL images and bounding boxes",
        ):
            transform(torch.tensor(0))

    def test__transform(self, mocker):
        transform = transforms.RandomIoUCrop()

Philip Meier's avatar
Philip Meier committed
653
654
        size = (32, 24)
        image = make_image(size)
655
        bboxes = make_bounding_boxes(format="XYXY", canvas_size=size, batch_dims=(6,))
Philip Meier's avatar
Philip Meier committed
656
        masks = make_detection_mask(size, num_objects=6)
657
658
659
660
661
662
663
664
665
666
667

        sample = [image, bboxes, masks]

        is_within_crop_area = torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool)

        params = dict(top=1, left=2, height=12, width=12, is_within_crop_area=is_within_crop_area)
        transform._get_params = mocker.MagicMock(return_value=params)
        output = transform(sample)

        # check number of bboxes vs number of labels:
        output_bboxes = output[1]
668
        assert isinstance(output_bboxes, tv_tensors.BoundingBoxes)
669
670
671
        assert (output_bboxes[~is_within_crop_area] == 0).all()

        output_masks = output[2]
672
        assert isinstance(output_masks, tv_tensors.Mask)
673
674
675


class TestScaleJitter:
Philip Meier's avatar
Philip Meier committed
676
677
    def test__get_params(self):
        canvas_size = (24, 32)
678
679
680
681
        target_size = (16, 12)
        scale_range = (0.5, 1.5)

        transform = transforms.ScaleJitter(target_size=target_size, scale_range=scale_range)
Philip Meier's avatar
Philip Meier committed
682
683

        sample = make_image(canvas_size)
684
685
686
687
688
689
690
691
692
693
694
695

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params([sample])

            assert "size" in params
            size = params["size"]

            assert isinstance(size, tuple) and len(size) == 2
            height, width = size

Philip Meier's avatar
Philip Meier committed
696
697
            r_min = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[0]
            r_max = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[1]
698

Philip Meier's avatar
Philip Meier committed
699
700
            assert int(canvas_size[0] * r_min) <= height <= int(canvas_size[0] * r_max)
            assert int(canvas_size[1] * r_min) <= width <= int(canvas_size[1] * r_max)
701
702
703
704


class TestRandomShortestSize:
    @pytest.mark.parametrize("min_size,max_size", [([5, 9], 20), ([5, 9], None)])
Philip Meier's avatar
Philip Meier committed
705
706
    def test__get_params(self, min_size, max_size):
        canvas_size = (3, 10)
707

708
        transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
709

Philip Meier's avatar
Philip Meier committed
710
        sample = make_image(canvas_size)
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
        params = transform._get_params([sample])

        assert "size" in params
        size = params["size"]

        assert isinstance(size, tuple) and len(size) == 2

        longer = max(size)
        shorter = min(size)
        if max_size is not None:
            assert longer <= max_size
            assert shorter <= max_size
        else:
            assert shorter in min_size


class TestLinearTransformation:
    def test_assertions(self):
        with pytest.raises(ValueError, match="transformation_matrix should be square"):
            transforms.LinearTransformation(torch.rand(2, 3), torch.rand(5))

        with pytest.raises(ValueError, match="mean_vector should have the same length"):
            transforms.LinearTransformation(torch.rand(3, 3), torch.rand(5))

    @pytest.mark.parametrize(
        "inpt",
        [
            122 * torch.ones(1, 3, 8, 8),
            122.0 * torch.ones(1, 3, 8, 8),
740
            tv_tensors.Image(122 * torch.ones(1, 3, 8, 8)),
741
742
743
744
745
746
747
748
749
750
            PIL.Image.new("RGB", (8, 8), (122, 122, 122)),
        ],
    )
    def test__transform(self, inpt):

        v = 121 * torch.ones(3 * 8 * 8)
        m = torch.ones(3 * 8 * 8, 3 * 8 * 8)
        transform = transforms.LinearTransformation(m, v)

        if isinstance(inpt, PIL.Image.Image):
751
            with pytest.raises(TypeError, match="does not support PIL images"):
752
753
754
755
756
757
758
759
760
761
762
763
764
                transform(inpt)
        else:
            output = transform(inpt)
            assert isinstance(output, torch.Tensor)
            assert output.unique() == 3 * 8 * 8
            assert output.dtype == inpt.dtype


class TestRandomResize:
    def test__get_params(self):
        min_size = 3
        max_size = 6

765
        transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

        for _ in range(10):
            params = transform._get_params([])

            assert isinstance(params["size"], list) and len(params["size"]) == 1
            size = params["size"][0]

            assert min_size <= size < max_size


class TestUniformTemporalSubsample:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.zeros(10, 3, 8, 8),
            torch.zeros(1, 10, 3, 8, 8),
782
            tv_tensors.Video(torch.zeros(1, 10, 3, 8, 8)),
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
        ],
    )
    def test__transform(self, inpt):
        num_samples = 5
        transform = transforms.UniformTemporalSubsample(num_samples)

        output = transform(inpt)
        assert type(output) is type(inpt)
        assert output.shape[-4] == num_samples
        assert output.dtype == inpt.dtype


# TODO: remove this test in 0.17 when the default of antialias changes to True
def test_antialias_warning():
    pil_img = PIL.Image.new("RGB", size=(10, 10), color=127)
    tensor_img = torch.randint(0, 256, size=(3, 10, 10), dtype=torch.uint8)
    tensor_video = torch.randint(0, 256, size=(2, 3, 10, 10), dtype=torch.uint8)

    match = "The default value of the antialias parameter"
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResizedCrop((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.ScaleJitter((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomShortestSize((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResize(10, 20)(tensor_img)

    with pytest.warns(UserWarning, match=match):
812
        F.resized_crop(tv_tensors.Image(tensor_img), 0, 0, 10, 10, (20, 20))
813
814

    with pytest.warns(UserWarning, match=match):
815
        F.resize(tv_tensors.Video(tensor_video), (20, 20))
816
    with pytest.warns(UserWarning, match=match):
817
        F.resized_crop(tv_tensors.Video(tensor_video), 0, 0, 10, 10, (20, 20))
818
819
820
821
822
823
824
825
826
827
828
829
830

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        transforms.RandomResizedCrop((20, 20))(pil_img)
        transforms.ScaleJitter((20, 20))(pil_img)
        transforms.RandomShortestSize((20, 20))(pil_img)
        transforms.RandomResize(10, 20)(pil_img)

        transforms.RandomResizedCrop((20, 20), antialias=True)(tensor_img)
        transforms.ScaleJitter((20, 20), antialias=True)(tensor_img)
        transforms.RandomShortestSize((20, 20), antialias=True)(tensor_img)
        transforms.RandomResize(10, 20, antialias=True)(tensor_img)

831
832
        F.resized_crop(tv_tensors.Image(tensor_img), 0, 0, 10, 10, (20, 20), antialias=True)
        F.resized_crop(tv_tensors.Video(tensor_video), 0, 0, 10, 10, (20, 20), antialias=True)
833
834


835
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
836
837
@pytest.mark.parametrize("label_type", (torch.Tensor, int))
@pytest.mark.parametrize("dataset_return_type", (dict, tuple))
838
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
839
840
def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):

841
    image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, 250, 250), dtype=torch.uint8))
842
843
844
845
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
846
        assert is_pure_tensor(image)
847
848
849
850
851
852
853
854
855
856
857

    label = 1 if label_type is int else torch.tensor([1])

    if dataset_return_type is dict:
        sample = {
            "image": image,
            "label": label,
        }
    else:
        sample = image, label

858
859
860
861
862
863
    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

864
865
    t = transforms.Compose(
        [
866
            transforms.RandomResizedCrop((224, 224), antialias=True),
867
868
869
870
871
            transforms.RandomHorizontalFlip(p=1),
            transforms.RandAugment(),
            transforms.TrivialAugmentWide(),
            transforms.AugMix(),
            transforms.AutoAugment(),
872
            to_tensor,
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
            # TODO: ConvertImageDtype is a pass-through on PIL images, is that
            # intended?  This results in a failure if we convert to tensor after
            # it, because the image would still be uint8 which make Normalize
            # fail.
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]),
            transforms.RandomErasing(p=1),
        ]
    )

    out = t(sample)

    assert type(out) == type(sample)

    if dataset_return_type is tuple:
        out_image, out_label = out
    else:
        assert out.keys() == sample.keys()
        out_image, out_label = out.values()

    assert out_image.shape[-2:] == (224, 224)
    assert out_label == label


897
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
898
@pytest.mark.parametrize("data_augmentation", ("hflip", "lsj", "multiscale", "ssd", "ssdlite"))
899
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
900
901
902
@pytest.mark.parametrize("sanitize", (True, False))
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
    torch.manual_seed(0)
903
904
905
906
907
908
909

    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

910
911
912
    if data_augmentation == "hflip":
        t = [
            transforms.RandomHorizontalFlip(p=1),
913
            to_tensor,
914
915
916
917
918
919
920
921
922
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "lsj":
        t = [
            transforms.ScaleJitter(target_size=(1024, 1024), antialias=True),
            # Note: replaced FixedSizeCrop with RandomCrop, becuase we're
            # leaving FixedSizeCrop in prototype for now, and it expects Label
            # classes which we won't release yet.
            # transforms.FixedSizeCrop(
923
            #     size=(1024, 1024), fill=defaultdict(lambda: (123.0, 117.0, 104.0), {tv_tensors.Mask: 0})
924
925
926
            # ),
            transforms.RandomCrop((1024, 1024), pad_if_needed=True),
            transforms.RandomHorizontalFlip(p=1),
927
            to_tensor,
928
929
930
931
932
933
934
935
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "multiscale":
        t = [
            transforms.RandomShortestSize(
                min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
            ),
            transforms.RandomHorizontalFlip(p=1),
936
            to_tensor,
937
938
939
940
941
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssd":
        t = [
            transforms.RandomPhotometricDistort(p=1),
942
            transforms.RandomZoomOut(fill={"others": (123.0, 117.0, 104.0), tv_tensors.Mask: 0}, p=1),
943
944
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
945
            to_tensor,
946
947
948
949
950
951
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssdlite":
        t = [
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
952
            to_tensor,
953
954
955
            transforms.ConvertImageDtype(torch.float),
        ]
    if sanitize:
956
        t += [transforms.SanitizeBoundingBoxes()]
957
958
959
960
961
    t = transforms.Compose(t)

    num_boxes = 5
    H = W = 250

962
    image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8))
963
964
965
966
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
967
        assert is_pure_tensor(image)
968
969
970
971
972
973

    label = torch.randint(0, 10, size=(num_boxes,))

    boxes = torch.randint(0, min(H, W) // 2, size=(num_boxes, 4))
    boxes[:, 2:] += boxes[:, :2]
    boxes = boxes.clamp(min=0, max=min(H, W))
974
    boxes = tv_tensors.BoundingBoxes(boxes, format="XYXY", canvas_size=(H, W))
975

976
    masks = tv_tensors.Mask(torch.randint(0, 2, size=(num_boxes, H, W), dtype=torch.uint8))
977
978
979
980
981
982
983
984
985
986

    sample = {
        "image": image,
        "label": label,
        "boxes": boxes,
        "masks": masks,
    }

    out = t(sample)

987
    if isinstance(to_tensor, transforms.ToTensor) and image_type is not tv_tensors.Image:
988
        assert is_pure_tensor(out["image"])
989
    else:
990
        assert isinstance(out["image"], tv_tensors.Image)
991
992
993
994
995
996
    assert isinstance(out["label"], type(sample["label"]))

    num_boxes_expected = {
        # ssd and ssdlite contain RandomIoUCrop which may "remove" some bbox. It
        # doesn't remove them strictly speaking, it just marks some boxes as
        # degenerate and those boxes will be later removed by
997
        # SanitizeBoundingBoxes(), which we add to the pipelines if the sanitize
998
999
1000
        # param is True.
        # Note that the values below are probably specific to the random seed
        # set above (which is fine).
1001
        (True, "ssd"): 5,
1002
1003
1004
1005
1006
1007
1008
        (True, "ssdlite"): 4,
    }.get((sanitize, data_augmentation), num_boxes)

    assert out["boxes"].shape[0] == out["masks"].shape[0] == out["label"].shape[0] == num_boxes_expected


@pytest.mark.parametrize("min_size", (1, 10))
1009
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
1010
1011
1012
1013
1014
1015
1016
1017
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_sanitize_bounding_boxes(min_size, labels_getter, sample_type):

    if sample_type is tuple and not isinstance(labels_getter, str):
        # The "lambda inputs: inputs["labels"]" labels_getter used in this test
        # doesn't work if the input is a tuple.
        return

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
    H, W = 256, 128

    boxes_and_validity = [
        ([0, 1, 10, 1], False),  # Y1 == Y2
        ([0, 1, 0, 20], False),  # X1 == X2
        ([0, 0, min_size - 1, 10], False),  # H < min_size
        ([0, 0, 10, min_size - 1], False),  # W < min_size
        ([0, 0, 10, H + 1], False),  # Y2 > H
        ([0, 0, W + 1, 10], False),  # X2 > W
        ([-1, 1, 10, 20], False),  # any < 0
        ([0, 0, -1, 20], False),  # any < 0
        ([0, 0, -10, -1], False),  # any < 0
        ([0, 0, min_size, 10], True),  # H < min_size
        ([0, 0, 10, min_size], True),  # W < min_size
        ([0, 0, W, H], True),  # TODO: Is that actually OK?? Should it be -1?
        ([1, 1, 30, 20], True),
        ([0, 0, 10, 10], True),
        ([1, 1, 30, 20], True),
    ]

    random.shuffle(boxes_and_validity)  # For test robustness: mix order of wrong and correct cases
    boxes, is_valid_mask = zip(*boxes_and_validity)
    valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]

    boxes = torch.tensor(boxes)
    labels = torch.arange(boxes.shape[0])

1045
    boxes = tv_tensors.BoundingBoxes(
1046
        boxes,
1047
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1048
        canvas_size=(H, W),
1049
1050
    )

1051
    masks = tv_tensors.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
1052
1053
    whatever = torch.rand(10)
    input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
1054
    sample = {
1055
        "image": input_img,
1056
1057
        "labels": labels,
        "boxes": boxes,
1058
        "whatever": whatever,
1059
1060
1061
1062
        "None": None,
        "masks": masks,
    }

1063
1064
1065
1066
    if sample_type is tuple:
        img = sample.pop("image")
        sample = (img, sample)

1067
    out = transforms.SanitizeBoundingBoxes(min_size=min_size, labels_getter=labels_getter)(sample)
1068

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
    if sample_type is tuple:
        out_image = out[0]
        out_labels = out[1]["labels"]
        out_boxes = out[1]["boxes"]
        out_masks = out[1]["masks"]
        out_whatever = out[1]["whatever"]
    else:
        out_image = out["image"]
        out_labels = out["labels"]
        out_boxes = out["boxes"]
        out_masks = out["masks"]
        out_whatever = out["whatever"]

    assert out_image is input_img
    assert out_whatever is whatever
1084

1085
1086
    assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
    assert isinstance(out_masks, tv_tensors.Mask)
1087

1088
    if labels_getter is None or (callable(labels_getter) and labels_getter({"labels": "blah"}) is None):
1089
        assert out_labels is labels
1090
    else:
1091
1092
        assert isinstance(out_labels, torch.Tensor)
        assert out_boxes.shape[0] == out_labels.shape[0] == out_masks.shape[0]
1093
        # This works because we conveniently set labels to arange(num_boxes)
1094
        assert out_labels.tolist() == valid_indices
1095
1096


1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
def test_sanitize_bounding_boxes_no_label():
    # Non-regression test for https://github.com/pytorch/vision/issues/7878

    img = make_image()
    boxes = make_bounding_boxes()

    with pytest.raises(ValueError, match="or a two-tuple whose second item is a dict"):
        transforms.SanitizeBoundingBoxes()(img, boxes)

    out_img, out_boxes = transforms.SanitizeBoundingBoxes(labels_getter=None)(img, boxes)
1107
1108
    assert isinstance(out_img, tv_tensors.Image)
    assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
1109
1110


1111
1112
def test_sanitize_bounding_boxes_errors():

1113
    good_bbox = tv_tensors.BoundingBoxes(
1114
        [[0, 0, 10, 10]],
1115
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1116
        canvas_size=(20, 20),
1117
1118
1119
    )

    with pytest.raises(ValueError, match="min_size must be >= 1"):
1120
        transforms.SanitizeBoundingBoxes(min_size=0)
1121
    with pytest.raises(ValueError, match="labels_getter should either be 'default'"):
1122
        transforms.SanitizeBoundingBoxes(labels_getter=12)
1123
1124
1125

    with pytest.raises(ValueError, match="Could not infer where the labels are"):
        bad_labels_key = {"bbox": good_bbox, "BAD_KEY": torch.arange(good_bbox.shape[0])}
1126
        transforms.SanitizeBoundingBoxes()(bad_labels_key)
1127
1128
1129

    with pytest.raises(ValueError, match="must be a tensor"):
        not_a_tensor = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0]).tolist()}
1130
        transforms.SanitizeBoundingBoxes()(not_a_tensor)
1131
1132
1133

    with pytest.raises(ValueError, match="Number of boxes"):
        different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
1134
        transforms.SanitizeBoundingBoxes()(different_sizes)
1135

1136

Philip Meier's avatar
Philip Meier committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
class TestLambda:
    inputs = pytest.mark.parametrize("input", [object(), torch.empty(()), np.empty(()), "string", 1, 0.0])

    @inputs
    def test_default(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        transform = transforms.Lambda(was_applied_fn)

        transform(input)

        assert was_applied

    @inputs
    def test_with_types(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        types = (torch.Tensor, np.ndarray)
        transform = transforms.Lambda(was_applied_fn, *types)

        transform(input)

        assert was_applied is isinstance(input, types)