test_transforms_v2_consistency.py 24.3 KB
Newer Older
1
2
import importlib.machinery
import importlib.util
3
import inspect
4
import random
5
import re
6
from pathlib import Path
7

8
import numpy as np
9
import pytest
10
11

import torch
12
import torchvision.transforms.v2 as v2_transforms
13
from common_utils import assert_close, assert_equal, set_rng_seed
14
from torch import nn
15
from torchvision import transforms as legacy_transforms, tv_tensors
16
from torchvision._utils import sequence_to_str
17

18
from torchvision.transforms import functional as legacy_F
19
from torchvision.transforms.v2 import functional as prototype_F
Nicolas Hug's avatar
Nicolas Hug committed
20
from torchvision.transforms.v2._utils import _get_fill, query_size
21
from torchvision.transforms.v2.functional import to_pil_image
22
23
24
25
26
27
28
29
from transforms_v2_legacy_utils import (
    ArgsKwargs,
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
    make_segmentation_mask,
)
30

31
DEFAULT_MAKE_IMAGES_KWARGS = dict(color_spaces=["RGB"], extra_dims=[(4,)])
32
33


Nicolas Hug's avatar
Nicolas Hug committed
34
35
36
37
38
39
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


40
41
42
43
44
45
46
47
48
class NotScriptableArgsKwargs(ArgsKwargs):
    """
    This class is used to mark parameters that render the transform non-scriptable. They still work in eager mode and
    thus will be tested there, but will be skipped by the JIT tests.
    """

    pass


49
50
class ConsistencyConfig:
    def __init__(
51
52
53
        self,
        prototype_cls,
        legacy_cls,
54
55
        # If no args_kwargs is passed, only the signature will be checked
        args_kwargs=(),
56
57
58
        make_images_kwargs=None,
        supports_pil=True,
        removed_params=(),
59
        closeness_kwargs=None,
60
61
62
    ):
        self.prototype_cls = prototype_cls
        self.legacy_cls = legacy_cls
63
        self.args_kwargs = args_kwargs
64
65
        self.make_images_kwargs = make_images_kwargs or DEFAULT_MAKE_IMAGES_KWARGS
        self.supports_pil = supports_pil
66
        self.removed_params = removed_params
67
        self.closeness_kwargs = closeness_kwargs or dict(rtol=0, atol=0)
68
69


70
71
72
73
# These are here since both the prototype and legacy transform need to be constructed with the same random parameters
LINEAR_TRANSFORMATION_MEAN = torch.rand(36)
LINEAR_TRANSFORMATION_MATRIX = torch.rand([LINEAR_TRANSFORMATION_MEAN.numel()] * 2)

74
CONSISTENCY_CONFIGS = [
75
    ConsistencyConfig(
76
        v2_transforms.Lambda,
77
78
        legacy_transforms.Lambda,
        [
79
            NotScriptableArgsKwargs(lambda image: image / 2),
80
81
82
83
84
        ],
        # Technically, this also supports PIL, but it is overkill to write a function here that supports tensor and PIL
        # images given that the transform does nothing but call it anyway.
        supports_pil=False,
    ),
85
    ConsistencyConfig(
86
        v2_transforms.Compose,
87
88
89
        legacy_transforms.Compose,
    ),
    ConsistencyConfig(
90
        v2_transforms.RandomApply,
91
92
93
        legacy_transforms.RandomApply,
    ),
    ConsistencyConfig(
94
        v2_transforms.RandomChoice,
95
96
97
        legacy_transforms.RandomChoice,
    ),
    ConsistencyConfig(
98
        v2_transforms.RandomOrder,
99
100
        legacy_transforms.RandomOrder,
    ),
101
102
103
]


104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
@pytest.mark.parametrize("config", CONSISTENCY_CONFIGS, ids=lambda config: config.legacy_cls.__name__)
def test_signature_consistency(config):
    legacy_params = dict(inspect.signature(config.legacy_cls).parameters)
    prototype_params = dict(inspect.signature(config.prototype_cls).parameters)

    for param in config.removed_params:
        legacy_params.pop(param, None)

    missing = legacy_params.keys() - prototype_params.keys()
    if missing:
        raise AssertionError(
            f"The prototype transform does not support the parameters "
            f"{sequence_to_str(sorted(missing), separate_last='and ')}, but the legacy transform does. "
            f"If that is intentional, e.g. pending deprecation, please add the parameters to the `removed_params` on "
            f"the `ConsistencyConfig`."
        )

    extra = prototype_params.keys() - legacy_params.keys()
122
123
124
125
126
127
    extra_without_default = {
        param
        for param in extra
        if prototype_params[param].default is inspect.Parameter.empty
        and prototype_params[param].kind not in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}
    }
128
129
    if extra_without_default:
        raise AssertionError(
130
131
132
            f"The prototype transform requires the parameters "
            f"{sequence_to_str(sorted(extra_without_default), separate_last='and ')}, but the legacy transform does "
            f"not. Please add a default value."
133
134
        )

135
136
137
138
139
140
    legacy_signature = list(legacy_params.keys())
    # Since we made sure that we don't have any extra parameters without default above, we clamp the prototype signature
    # to the same number of parameters as the legacy one
    prototype_signature = list(prototype_params.keys())[: len(legacy_signature)]

    assert prototype_signature == legacy_signature
141
142


143
144
145
def check_call_consistency(
    prototype_transform, legacy_transform, images=None, supports_pil=True, closeness_kwargs=None
):
146
147
    if images is None:
        images = make_images(**DEFAULT_MAKE_IMAGES_KWARGS)
148

149
150
    closeness_kwargs = closeness_kwargs or dict()

151
152
    for image in images:
        image_repr = f"[{tuple(image.shape)}, {str(image.dtype).rsplit('.')[-1]}]"
153
154
155

        image_tensor = torch.Tensor(image)
        try:
156
            torch.manual_seed(0)
157
            output_legacy_tensor = legacy_transform(image_tensor)
158
159
        except Exception as exc:
            raise pytest.UsageError(
160
                f"Transforming a tensor image {image_repr} failed in the legacy transform with the "
161
                f"error above. This means that you need to specify the parameters passed to `make_images` through the "
162
163
164
165
                "`make_images_kwargs` of the `ConsistencyConfig`."
            ) from exc

        try:
166
            torch.manual_seed(0)
167
            output_prototype_tensor = prototype_transform(image_tensor)
168
169
        except Exception as exc:
            raise AssertionError(
170
                f"Transforming a tensor image with shape {image_repr} failed in the prototype transform with "
171
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
172
                f"`is_pure_tensor` path in `_transform`."
173
174
            ) from exc

175
        assert_close(
176
177
178
            output_prototype_tensor,
            output_legacy_tensor,
            msg=lambda msg: f"Tensor image consistency check failed with: \n\n{msg}",
179
            **closeness_kwargs,
180
181
182
        )

        try:
183
            torch.manual_seed(0)
184
            output_prototype_image = prototype_transform(image)
185
186
        except Exception as exc:
            raise AssertionError(
187
                f"Transforming a image tv_tensor with shape {image_repr} failed in the prototype transform with "
188
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
189
                f"`tv_tensors.Image` path in `_transform`."
190
191
            ) from exc

192
        assert_close(
193
            output_prototype_image,
194
            output_prototype_tensor,
195
            msg=lambda msg: f"Output for tv_tensor and tensor images is not equal: \n\n{msg}",
196
            **closeness_kwargs,
197
198
        )

199
        if image.ndim == 3 and supports_pil:
200
            image_pil = to_pil_image(image)
201

202
            try:
203
                torch.manual_seed(0)
204
                output_legacy_pil = legacy_transform(image_pil)
205
206
            except Exception as exc:
                raise pytest.UsageError(
207
                    f"Transforming a PIL image with shape {image_repr} failed in the legacy transform with the "
208
209
210
211
212
                    f"error above. If this transform does not support PIL images, set `supports_pil=False` on the "
                    "`ConsistencyConfig`. "
                ) from exc

            try:
213
                torch.manual_seed(0)
214
                output_prototype_pil = prototype_transform(image_pil)
215
216
            except Exception as exc:
                raise AssertionError(
217
                    f"Transforming a PIL image with shape {image_repr} failed in the prototype transform with "
218
219
220
221
                    f"the error above. This means there is a consistency bug either in `_get_params` or in the "
                    f"`PIL.Image.Image` path in `_transform`."
                ) from exc

222
            assert_close(
223
224
                output_prototype_pil,
                output_legacy_pil,
225
                msg=lambda msg: f"PIL image consistency check failed with: \n\n{msg}",
226
                **closeness_kwargs,
227
            )
228
229


230
@pytest.mark.parametrize(
231
232
    ("config", "args_kwargs"),
    [
233
234
235
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
236
        for config in CONSISTENCY_CONFIGS
237
        for idx, args_kwargs in enumerate(config.args_kwargs)
238
    ],
239
)
240
@pytest.mark.filterwarnings("ignore")
241
def test_call_consistency(config, args_kwargs):
242
243
244
    args, kwargs = args_kwargs

    try:
245
        legacy_transform = config.legacy_cls(*args, **kwargs)
246
247
248
249
250
251
252
    except Exception as exc:
        raise pytest.UsageError(
            f"Initializing the legacy transform failed with the error above. "
            f"Please correct the `ArgsKwargs({args_kwargs})` in the `ConsistencyConfig`."
        ) from exc

    try:
253
        prototype_transform = config.prototype_cls(*args, **kwargs)
254
255
256
257
258
259
    except Exception as exc:
        raise AssertionError(
            "Initializing the prototype transform failed with the error above. "
            "This means there is a consistency bug in the constructor."
        ) from exc

260
261
262
263
264
    check_call_consistency(
        prototype_transform,
        legacy_transform,
        images=make_images(**config.make_images_kwargs),
        supports_pil=config.supports_pil,
265
        closeness_kwargs=config.closeness_kwargs,
266
267
268
    )


269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
@pytest.mark.parametrize(
    ("config", "args_kwargs"),
    [
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
        for config in CONSISTENCY_CONFIGS
        for idx, args_kwargs in enumerate(config.args_kwargs)
        if not isinstance(args_kwargs, NotScriptableArgsKwargs)
    ],
)
def test_jit_consistency(config, args_kwargs):
    args, kwargs = args_kwargs

    prototype_transform_eager = config.prototype_cls(*args, **kwargs)
    legacy_transform_eager = config.legacy_cls(*args, **kwargs)

    legacy_transform_scripted = torch.jit.script(legacy_transform_eager)
    prototype_transform_scripted = torch.jit.script(prototype_transform_eager)

    for image in make_images(**config.make_images_kwargs):
        image = image.as_subclass(torch.Tensor)

        torch.manual_seed(0)
        output_legacy_scripted = legacy_transform_scripted(image)

        torch.manual_seed(0)
        output_prototype_scripted = prototype_transform_scripted(image)

        assert_close(output_prototype_scripted, output_legacy_scripted, **config.closeness_kwargs)


301
302
303
304
305
306
307
308
309
310
class TestContainerTransforms:
    """
    Since we are testing containers here, we also need some transforms to wrap. Thus, testing a container transform for
    consistency automatically tests the wrapped transforms consistency.

    Instead of complicated mocking or creating custom transforms just for these tests, here we use deterministic ones
    that were already tested for consistency above.
    """

    def test_compose(self):
311
        prototype_transform = v2_transforms.Compose(
312
            [
313
314
                v2_transforms.Resize(256),
                v2_transforms.CenterCrop(224),
315
316
317
318
319
320
321
322
323
            ]
        )
        legacy_transform = legacy_transforms.Compose(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ]
        )

324
325
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
326
327

    @pytest.mark.parametrize("p", [0, 0.1, 0.5, 0.9, 1])
328
329
    @pytest.mark.parametrize("sequence_type", [list, nn.ModuleList])
    def test_random_apply(self, p, sequence_type):
330
        prototype_transform = v2_transforms.RandomApply(
331
332
            sequence_type(
                [
333
334
                    v2_transforms.Resize(256),
                    v2_transforms.CenterCrop(224),
335
336
                ]
            ),
337
338
339
            p=p,
        )
        legacy_transform = legacy_transforms.RandomApply(
340
341
342
343
344
345
            sequence_type(
                [
                    legacy_transforms.Resize(256),
                    legacy_transforms.CenterCrop(224),
                ]
            ),
346
347
348
            p=p,
        )

349
350
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
351

352
353
354
355
356
        if sequence_type is nn.ModuleList:
            # quick and dirty test that it is jit-scriptable
            scripted = torch.jit.script(prototype_transform)
            scripted(torch.rand(1, 3, 300, 300))

357
    # We can't test other values for `p` since the random parameter generation is different
358
359
    @pytest.mark.parametrize("probabilities", [(0, 1), (1, 0)])
    def test_random_choice(self, probabilities):
360
        prototype_transform = v2_transforms.RandomChoice(
361
            [
362
                v2_transforms.Resize(256),
363
364
                legacy_transforms.CenterCrop(224),
            ],
365
            p=probabilities,
366
367
368
369
370
371
        )
        legacy_transform = legacy_transforms.RandomChoice(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ],
372
            p=probabilities,
373
374
        )

375
376
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
377
378


379
380
class TestToTensorTransforms:
    def test_pil_to_tensor(self):
381
        prototype_transform = v2_transforms.PILToTensor()
382
383
        legacy_transform = legacy_transforms.PILToTensor()

384
        for image in make_images(extra_dims=[()]):
385
            image_pil = to_pil_image(image)
386
387
388
389

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))

    def test_to_tensor(self):
390
        with pytest.warns(UserWarning, match=re.escape("The transform `ToTensor()` is deprecated")):
391
            prototype_transform = v2_transforms.ToTensor()
392
393
        legacy_transform = legacy_transforms.ToTensor()

394
        for image in make_images(extra_dims=[()]):
395
            image_pil = to_pil_image(image)
396
397
398
399
            image_numpy = np.array(image_pil)

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))
            assert_equal(prototype_transform(image_numpy), legacy_transform(image_numpy))
400
401


402
def import_transforms_from_references(reference):
403
404
405
406
407
408
409
410
411
412
    HERE = Path(__file__).parent
    PROJECT_ROOT = HERE.parent

    loader = importlib.machinery.SourceFileLoader(
        "transforms", str(PROJECT_ROOT / "references" / reference / "transforms.py")
    )
    spec = importlib.util.spec_from_loader("transforms", loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
    return module
413
414
415


det_transforms = import_transforms_from_references("detection")
416
417
418


class TestRefDetTransforms:
419
    def make_tv_tensors(self, with_mask=True):
420
421
422
        size = (600, 800)
        num_objects = 22

423
424
425
        def make_label(extra_dims, categories):
            return torch.randint(categories, extra_dims, dtype=torch.int64)

426
        pil_image = to_pil_image(make_image(size=size, color_space="RGB"))
427
        target = {
428
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
429
430
431
432
433
434
435
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (pil_image, target)

436
        tensor_image = torch.Tensor(make_image(size=size, color_space="RGB", dtype=torch.float32))
437
        target = {
438
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
439
440
441
442
443
444
445
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (tensor_image, target)

446
        tv_tensor_image = make_image(size=size, color_space="RGB", dtype=torch.float32)
447
        target = {
448
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
449
450
451
452
453
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

454
        yield (tv_tensor_image, target)
455
456
457
458

    @pytest.mark.parametrize(
        "t_ref, t, data_kwargs",
        [
459
            (det_transforms.RandomHorizontalFlip(p=1.0), v2_transforms.RandomHorizontalFlip(p=1.0), {}),
460
461
462
463
464
            (
                det_transforms.RandomIoUCrop(),
                v2_transforms.Compose(
                    [
                        v2_transforms.RandomIoUCrop(),
465
                        v2_transforms.SanitizeBoundingBoxes(labels_getter=lambda sample: sample[1]["labels"]),
466
467
468
469
                    ]
                ),
                {"with_mask": False},
            ),
470
            (det_transforms.RandomZoomOut(), v2_transforms.RandomZoomOut(), {"with_mask": False}),
471
            (det_transforms.ScaleJitter((1024, 1024)), v2_transforms.ScaleJitter((1024, 1024), antialias=True), {}),
472
473
474
475
            (
                det_transforms.RandomShortestSize(
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
476
                v2_transforms.RandomShortestSize(
477
478
479
480
481
482
483
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
                {},
            ),
        ],
    )
    def test_transform(self, t_ref, t, data_kwargs):
484
        for dp in self.make_tv_tensors(**data_kwargs):
485
486
487
488
489
490
491
492
493

            # We should use prototype transform first as reference transform performs inplace target update
            torch.manual_seed(12)
            output = t(dp)

            torch.manual_seed(12)
            expected_output = t_ref(*dp)

            assert_equal(expected_output, output)
494
495
496
497
498
499
500
501
502


seg_transforms = import_transforms_from_references("segmentation")


# We need this transform for two reasons:
# 1. transforms.RandomCrop uses a different scheme to pad images and masks of insufficient size than its name
#    counterpart in the detection references. Thus, we cannot use it with `pad_if_needed=True`
# 2. transforms.Pad only supports a fixed padding, but the segmentation datasets don't have a fixed image size.
503
class PadIfSmaller(v2_transforms.Transform):
504
505
506
    def __init__(self, size, fill=0):
        super().__init__()
        self.size = size
507
        self.fill = v2_transforms._geometry._setup_fill_arg(fill)
508
509

    def _get_params(self, sample):
Philip Meier's avatar
Philip Meier committed
510
        height, width = query_size(sample)
511
512
513
514
515
516
517
518
        padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)]
        needs_padding = any(padding)
        return dict(padding=padding, needs_padding=needs_padding)

    def _transform(self, inpt, params):
        if not params["needs_padding"]:
            return inpt

519
        fill = _get_fill(self.fill, type(inpt))
520
        return prototype_F.pad(inpt, padding=params["padding"], fill=fill)
521
522
523


class TestRefSegTransforms:
524
    def make_tv_tensors(self, supports_pil=True, image_dtype=torch.uint8):
525
        size = (256, 460)
526
527
528
529
        num_categories = 21

        conv_fns = []
        if supports_pil:
530
            conv_fns.append(to_pil_image)
531
532
533
        conv_fns.extend([torch.Tensor, lambda x: x])

        for conv_fn in conv_fns:
534
535
            tv_tensor_image = make_image(size=size, color_space="RGB", dtype=image_dtype)
            tv_tensor_mask = make_segmentation_mask(size=size, num_categories=num_categories, dtype=torch.uint8)
536

537
            dp = (conv_fn(tv_tensor_image), tv_tensor_mask)
538
            dp_ref = (
539
540
                to_pil_image(tv_tensor_image) if supports_pil else tv_tensor_image.as_subclass(torch.Tensor),
                to_pil_image(tv_tensor_mask),
541
542
543
544
545
546
547
548
549
            )

            yield dp, dp_ref

    def set_seed(self, seed=12):
        torch.manual_seed(seed)
        random.seed(seed)

    def check(self, t, t_ref, data_kwargs=None):
550
        for dp, dp_ref in self.make_tv_tensors(**data_kwargs or dict()):
551
552

            self.set_seed()
553
            actual = actual_image, actual_mask = t(dp)
554
555

            self.set_seed()
556
557
558
559
560
            expected_image, expected_mask = t_ref(*dp_ref)
            if isinstance(actual_image, torch.Tensor) and not isinstance(expected_image, torch.Tensor):
                expected_image = legacy_F.pil_to_tensor(expected_image)
            expected_mask = legacy_F.pil_to_tensor(expected_mask).squeeze(0)
            expected = (expected_image, expected_mask)
561

562
            assert_equal(actual, expected)
563
564
565
566
567
568

    @pytest.mark.parametrize(
        ("t_ref", "t", "data_kwargs"),
        [
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=1.0),
569
                v2_transforms.RandomHorizontalFlip(p=1.0),
570
571
572
573
                dict(),
            ),
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=0.0),
574
                v2_transforms.RandomHorizontalFlip(p=0.0),
575
576
577
578
                dict(),
            ),
            (
                seg_transforms.RandomCrop(size=480),
579
                v2_transforms.Compose(
580
                    [
581
                        PadIfSmaller(size=480, fill={tv_tensors.Mask: 255, "others": 0}),
582
                        v2_transforms.RandomCrop(size=480),
583
584
585
586
587
588
                    ]
                ),
                dict(),
            ),
            (
                seg_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
589
                v2_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
590
591
592
593
594
595
596
                dict(supports_pil=False, image_dtype=torch.float),
            ),
        ],
    )
    def test_common(self, t_ref, t, data_kwargs):
        self.check(t, t_ref, data_kwargs)

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

@pytest.mark.parametrize(
    ("legacy_dispatcher", "name_only_params"),
    [
        (legacy_F.get_dimensions, {}),
        (legacy_F.get_image_size, {}),
        (legacy_F.get_image_num_channels, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.pil_to_tensor, {}),
        (legacy_F.convert_image_dtype, {}),
        (legacy_F.to_pil_image, {}),
        (legacy_F.to_grayscale, {}),
        (legacy_F.rgb_to_grayscale, {}),
        (legacy_F.to_tensor, {}),
    ],
)
def test_dispatcher_signature_consistency(legacy_dispatcher, name_only_params):
    legacy_signature = inspect.signature(legacy_dispatcher)
    legacy_params = list(legacy_signature.parameters.values())[1:]

    try:
        prototype_dispatcher = getattr(prototype_F, legacy_dispatcher.__name__)
    except AttributeError:
        raise AssertionError(
            f"Legacy dispatcher `F.{legacy_dispatcher.__name__}` has no prototype equivalent"
        ) from None

    prototype_signature = inspect.signature(prototype_dispatcher)
    prototype_params = list(prototype_signature.parameters.values())[1:]

    # Some dispatchers got extra parameters. This makes sure they have a default argument and thus are BC. We don't
    # need to check if parameters were added in the middle rather than at the end, since that will be caught by the
    # regular check below.
    prototype_params, new_prototype_params = (
        prototype_params[: len(legacy_params)],
        prototype_params[len(legacy_params) :],
    )
    for param in new_prototype_params:
        assert param.default is not param.empty

    # Some annotations were changed mostly to supersets of what was there before. Plus, some legacy dispatchers had no
    # annotations. In these cases we simply drop the annotation and default argument from the comparison
    for prototype_param, legacy_param in zip(prototype_params, legacy_params):
        if legacy_param.name in name_only_params:
            prototype_param._annotation = prototype_param._default = inspect.Parameter.empty
            legacy_param._annotation = legacy_param._default = inspect.Parameter.empty
        elif legacy_param.annotation is inspect.Parameter.empty:
            prototype_param._annotation = inspect.Parameter.empty

    assert prototype_params == legacy_params