autoaugment.py 19.7 KB
Newer Older
1
2
3
4
5
import math
import torch

from enum import Enum
from torch import Tensor
6
from typing import List, Tuple, Optional, Dict
7
8
9

from . import functional as F, InterpolationMode

10
__all__ = ["AutoAugmentPolicy", "AutoAugment", "RandAugment", "TrivialAugmentWide"]
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def _apply_op(img: Tensor, op_name: str, magnitude: float,
              interpolation: InterpolationMode, fill: Optional[List[float]]):
    if op_name == "ShearX":
        img = F.affine(img, angle=0.0, translate=[0, 0], scale=1.0, shear=[math.degrees(magnitude), 0.0],
                       interpolation=interpolation, fill=fill)
    elif op_name == "ShearY":
        img = F.affine(img, angle=0.0, translate=[0, 0], scale=1.0, shear=[0.0, math.degrees(magnitude)],
                       interpolation=interpolation, fill=fill)
    elif op_name == "TranslateX":
        img = F.affine(img, angle=0.0, translate=[int(magnitude), 0], scale=1.0,
                       interpolation=interpolation, shear=[0.0, 0.0], fill=fill)
    elif op_name == "TranslateY":
        img = F.affine(img, angle=0.0, translate=[0, int(magnitude)], scale=1.0,
                       interpolation=interpolation, shear=[0.0, 0.0], fill=fill)
    elif op_name == "Rotate":
        img = F.rotate(img, magnitude, interpolation=interpolation, fill=fill)
    elif op_name == "Brightness":
        img = F.adjust_brightness(img, 1.0 + magnitude)
    elif op_name == "Color":
        img = F.adjust_saturation(img, 1.0 + magnitude)
    elif op_name == "Contrast":
        img = F.adjust_contrast(img, 1.0 + magnitude)
    elif op_name == "Sharpness":
        img = F.adjust_sharpness(img, 1.0 + magnitude)
    elif op_name == "Posterize":
        img = F.posterize(img, int(magnitude))
    elif op_name == "Solarize":
        img = F.solarize(img, magnitude)
    elif op_name == "AutoContrast":
        img = F.autocontrast(img)
    elif op_name == "Equalize":
        img = F.equalize(img)
    elif op_name == "Invert":
        img = F.invert(img)
47
48
    elif op_name == "Identity":
        pass
49
50
51
52
53
    else:
        raise ValueError("The provided operator {} is not recognized.".format(op_name))
    return img


54
55
class AutoAugmentPolicy(Enum):
    """AutoAugment policies learned on different datasets.
56
    Available policies are IMAGENET, CIFAR10 and SVHN.
57
58
59
60
61
62
    """
    IMAGENET = "imagenet"
    CIFAR10 = "cifar10"
    SVHN = "svhn"


63
# FIXME: Eliminate copy-pasted code for fill standardization and _augmentation_space() by moving stuff on a base class
64
65
66
class AutoAugment(torch.nn.Module):
    r"""AutoAugment data augmentation method based on
    `"AutoAugment: Learning Augmentation Strategies from Data" <https://arxiv.org/pdf/1805.09501.pdf>`_.
67
68
69
    If the image is torch Tensor, it should be of type torch.uint8, and it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
70
71
72
73
74
75
76

    Args:
        policy (AutoAugmentPolicy): Desired policy enum defined by
            :class:`torchvision.transforms.autoaugment.AutoAugmentPolicy`. Default is ``AutoAugmentPolicy.IMAGENET``.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
77
78
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
79
80
    """

81
82
83
84
85
86
    def __init__(
        self,
        policy: AutoAugmentPolicy = AutoAugmentPolicy.IMAGENET,
        interpolation: InterpolationMode = InterpolationMode.NEAREST,
        fill: Optional[List[float]] = None
    ) -> None:
87
88
89
90
        super().__init__()
        self.policy = policy
        self.interpolation = interpolation
        self.fill = fill
91
        self.policies = self._get_policies(policy)
92

93
    def _get_policies(
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        self,
        policy: AutoAugmentPolicy
    ) -> List[Tuple[Tuple[str, float, Optional[int]], Tuple[str, float, Optional[int]]]]:
        if policy == AutoAugmentPolicy.IMAGENET:
            return [
                (("Posterize", 0.4, 8), ("Rotate", 0.6, 9)),
                (("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)),
                (("Equalize", 0.8, None), ("Equalize", 0.6, None)),
                (("Posterize", 0.6, 7), ("Posterize", 0.6, 6)),
                (("Equalize", 0.4, None), ("Solarize", 0.2, 4)),
                (("Equalize", 0.4, None), ("Rotate", 0.8, 8)),
                (("Solarize", 0.6, 3), ("Equalize", 0.6, None)),
                (("Posterize", 0.8, 5), ("Equalize", 1.0, None)),
                (("Rotate", 0.2, 3), ("Solarize", 0.6, 8)),
                (("Equalize", 0.6, None), ("Posterize", 0.4, 6)),
                (("Rotate", 0.8, 8), ("Color", 0.4, 0)),
                (("Rotate", 0.4, 9), ("Equalize", 0.6, None)),
                (("Equalize", 0.0, None), ("Equalize", 0.8, None)),
                (("Invert", 0.6, None), ("Equalize", 1.0, None)),
                (("Color", 0.6, 4), ("Contrast", 1.0, 8)),
                (("Rotate", 0.8, 8), ("Color", 1.0, 2)),
                (("Color", 0.8, 8), ("Solarize", 0.8, 7)),
                (("Sharpness", 0.4, 7), ("Invert", 0.6, None)),
                (("ShearX", 0.6, 5), ("Equalize", 1.0, None)),
                (("Color", 0.4, 0), ("Equalize", 0.6, None)),
                (("Equalize", 0.4, None), ("Solarize", 0.2, 4)),
                (("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)),
                (("Invert", 0.6, None), ("Equalize", 1.0, None)),
                (("Color", 0.6, 4), ("Contrast", 1.0, 8)),
                (("Equalize", 0.8, None), ("Equalize", 0.6, None)),
            ]
        elif policy == AutoAugmentPolicy.CIFAR10:
            return [
                (("Invert", 0.1, None), ("Contrast", 0.2, 6)),
                (("Rotate", 0.7, 2), ("TranslateX", 0.3, 9)),
                (("Sharpness", 0.8, 1), ("Sharpness", 0.9, 3)),
                (("ShearY", 0.5, 8), ("TranslateY", 0.7, 9)),
                (("AutoContrast", 0.5, None), ("Equalize", 0.9, None)),
                (("ShearY", 0.2, 7), ("Posterize", 0.3, 7)),
                (("Color", 0.4, 3), ("Brightness", 0.6, 7)),
                (("Sharpness", 0.3, 9), ("Brightness", 0.7, 9)),
                (("Equalize", 0.6, None), ("Equalize", 0.5, None)),
                (("Contrast", 0.6, 7), ("Sharpness", 0.6, 5)),
                (("Color", 0.7, 7), ("TranslateX", 0.5, 8)),
                (("Equalize", 0.3, None), ("AutoContrast", 0.4, None)),
                (("TranslateY", 0.4, 3), ("Sharpness", 0.2, 6)),
                (("Brightness", 0.9, 6), ("Color", 0.2, 8)),
                (("Solarize", 0.5, 2), ("Invert", 0.0, None)),
                (("Equalize", 0.2, None), ("AutoContrast", 0.6, None)),
                (("Equalize", 0.2, None), ("Equalize", 0.6, None)),
                (("Color", 0.9, 9), ("Equalize", 0.6, None)),
                (("AutoContrast", 0.8, None), ("Solarize", 0.2, 8)),
                (("Brightness", 0.1, 3), ("Color", 0.7, 0)),
                (("Solarize", 0.4, 5), ("AutoContrast", 0.9, None)),
                (("TranslateY", 0.9, 9), ("TranslateY", 0.7, 9)),
                (("AutoContrast", 0.9, None), ("Solarize", 0.8, 3)),
                (("Equalize", 0.8, None), ("Invert", 0.1, None)),
                (("TranslateY", 0.7, 9), ("AutoContrast", 0.9, None)),
            ]
        elif policy == AutoAugmentPolicy.SVHN:
            return [
                (("ShearX", 0.9, 4), ("Invert", 0.2, None)),
                (("ShearY", 0.9, 8), ("Invert", 0.7, None)),
                (("Equalize", 0.6, None), ("Solarize", 0.6, 6)),
                (("Invert", 0.9, None), ("Equalize", 0.6, None)),
                (("Equalize", 0.6, None), ("Rotate", 0.9, 3)),
                (("ShearX", 0.9, 4), ("AutoContrast", 0.8, None)),
                (("ShearY", 0.9, 8), ("Invert", 0.4, None)),
                (("ShearY", 0.9, 5), ("Solarize", 0.2, 6)),
                (("Invert", 0.9, None), ("AutoContrast", 0.8, None)),
                (("Equalize", 0.6, None), ("Rotate", 0.9, 3)),
                (("ShearX", 0.9, 4), ("Solarize", 0.3, 3)),
                (("ShearY", 0.8, 8), ("Invert", 0.7, None)),
                (("Equalize", 0.9, None), ("TranslateY", 0.6, 6)),
                (("Invert", 0.9, None), ("Equalize", 0.6, None)),
                (("Contrast", 0.3, 3), ("Rotate", 0.8, 4)),
                (("Invert", 0.8, None), ("TranslateY", 0.0, 2)),
                (("ShearY", 0.7, 6), ("Solarize", 0.4, 8)),
                (("Invert", 0.6, None), ("Rotate", 0.8, 4)),
                (("ShearY", 0.3, 7), ("TranslateX", 0.9, 3)),
                (("ShearX", 0.1, 6), ("Invert", 0.6, None)),
                (("Solarize", 0.7, 2), ("TranslateY", 0.6, 7)),
                (("ShearY", 0.8, 4), ("Invert", 0.8, None)),
                (("ShearX", 0.7, 9), ("TranslateY", 0.8, 3)),
                (("ShearY", 0.8, 5), ("AutoContrast", 0.7, None)),
                (("ShearX", 0.7, 2), ("Invert", 0.1, None)),
            ]
        else:
182
            raise ValueError("The provided policy {} is not recognized.".format(policy))
183

184
    def _augmentation_space(self, num_bins: int, image_size: List[int]) -> Dict[str, Tuple[Tensor, bool]]:
185
        return {
186
            # op_name: (magnitudes, signed)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
            "ShearX": (torch.linspace(0.0, 0.3, num_bins), True),
            "ShearY": (torch.linspace(0.0, 0.3, num_bins), True),
            "TranslateX": (torch.linspace(0.0, 150.0 / 331.0 * image_size[0], num_bins), True),
            "TranslateY": (torch.linspace(0.0, 150.0 / 331.0 * image_size[1], num_bins), True),
            "Rotate": (torch.linspace(0.0, 30.0, num_bins), True),
            "Brightness": (torch.linspace(0.0, 0.9, num_bins), True),
            "Color": (torch.linspace(0.0, 0.9, num_bins), True),
            "Contrast": (torch.linspace(0.0, 0.9, num_bins), True),
            "Sharpness": (torch.linspace(0.0, 0.9, num_bins), True),
            "Posterize": (8 - (torch.arange(num_bins) / ((num_bins - 1) / 4)).round().int(), False),
            "Solarize": (torch.linspace(256.0, 0.0, num_bins), False),
            "AutoContrast": (torch.tensor(0.0), False),
            "Equalize": (torch.tensor(0.0), False),
            "Invert": (torch.tensor(0.0), False),
        }
202
203
204
205
206
207
208
209

    @staticmethod
    def get_params(transform_num: int) -> Tuple[int, Tensor, Tensor]:
        """Get parameters for autoaugment transformation

        Returns:
            params required by the autoaugment transformation
        """
210
        policy_id = int(torch.randint(transform_num, (1,)).item())
211
212
213
214
215
        probs = torch.rand((2,))
        signs = torch.randint(2, (2,))

        return policy_id, probs, signs

216
    def forward(self, img: Tensor) -> Tensor:
217
218
219
220
221
222
223
224
225
        """
            img (PIL Image or Tensor): Image to be transformed.

        Returns:
            PIL Image or Tensor: AutoAugmented image.
        """
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
226
                fill = [float(fill)] * F.get_image_num_channels(img)
227
228
229
            elif fill is not None:
                fill = [float(f) for f in fill]

230
        transform_id, probs, signs = self.get_params(len(self.policies))
231

232
        for i, (op_name, p, magnitude_id) in enumerate(self.policies[transform_id]):
233
            if probs[i] <= p:
234
                op_meta = self._augmentation_space(10, F.get_image_size(img))
235
236
237
                magnitudes, signed = op_meta[op_name]
                magnitude = float(magnitudes[magnitude_id].item()) if magnitude_id is not None else 0.0
                if signed and signs[i] == 0:
238
                    magnitude *= -1.0
239
                img = _apply_op(img, op_name, magnitude, interpolation=self.interpolation, fill=fill)
240
241
242

        return img

243
    def __repr__(self) -> str:
244
        return self.__class__.__name__ + '(policy={}, fill={})'.format(self.policy, self.fill)
245
246
247
248
249


class RandAugment(torch.nn.Module):
    r"""RandAugment data augmentation method based on
    `"RandAugment: Practical automated data augmentation with a reduced search space"
250
    <https://arxiv.org/abs/1909.13719>`_.
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    If the image is torch Tensor, it should be of type torch.uint8, and it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".

    Args:
        num_ops (int): Number of augmentation transformations to apply sequentially.
        magnitude (int): Magnitude for all the transformations.
        num_magnitude_bins (int): The number of different magnitude values.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        """

    def __init__(self, num_ops: int = 2, magnitude: int = 9, num_magnitude_bins: int = 30,
                 interpolation: InterpolationMode = InterpolationMode.NEAREST,
                 fill: Optional[List[float]] = None) -> None:
        super().__init__()
        self.num_ops = num_ops
        self.magnitude = magnitude
        self.num_magnitude_bins = num_magnitude_bins
        self.interpolation = interpolation
        self.fill = fill

    def _augmentation_space(self, num_bins: int, image_size: List[int]) -> Dict[str, Tuple[Tensor, bool]]:
        return {
            # op_name: (magnitudes, signed)
            "ShearX": (torch.linspace(0.0, 0.3, num_bins), True),
            "ShearY": (torch.linspace(0.0, 0.3, num_bins), True),
            "TranslateX": (torch.linspace(0.0, 150.0 / 331.0 * image_size[0], num_bins), True),
            "TranslateY": (torch.linspace(0.0, 150.0 / 331.0 * image_size[1], num_bins), True),
            "Rotate": (torch.linspace(0.0, 30.0, num_bins), True),
            "Brightness": (torch.linspace(0.0, 0.9, num_bins), True),
            "Color": (torch.linspace(0.0, 0.9, num_bins), True),
            "Contrast": (torch.linspace(0.0, 0.9, num_bins), True),
            "Sharpness": (torch.linspace(0.0, 0.9, num_bins), True),
            "Posterize": (8 - (torch.arange(num_bins) / ((num_bins - 1) / 4)).round().int(), False),
            "Solarize": (torch.linspace(256.0, 0.0, num_bins), False),
            "AutoContrast": (torch.tensor(0.0), False),
            "Equalize": (torch.tensor(0.0), False),
            "Invert": (torch.tensor(0.0), False),
        }

    def forward(self, img: Tensor) -> Tensor:
        """
            img (PIL Image or Tensor): Image to be transformed.
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        Returns:
            PIL Image or Tensor: Transformed image.
        """
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F.get_image_num_channels(img)
            elif fill is not None:
                fill = [float(f) for f in fill]

        for _ in range(self.num_ops):
            op_meta = self._augmentation_space(self.num_magnitude_bins, F.get_image_size(img))
            op_index = int(torch.randint(len(op_meta), (1,)).item())
            op_name = list(op_meta.keys())[op_index]
            magnitudes, signed = op_meta[op_name]
            magnitude = float(magnitudes[self.magnitude].item()) if magnitudes.ndim > 0 else 0.0
            if signed and torch.randint(2, (1,)):
                magnitude *= -1.0
            img = _apply_op(img, op_name, magnitude, interpolation=self.interpolation, fill=fill)

        return img

    def __repr__(self) -> str:
        s = self.__class__.__name__ + '('
        s += 'num_ops={num_ops}'
        s += ', magnitude={magnitude}'
        s += ', num_magnitude_bins={num_magnitude_bins}'
        s += ', interpolation={interpolation}'
        s += ', fill={fill}'
        s += ')'
        return s.format(**self.__dict__)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405


class TrivialAugmentWide(torch.nn.Module):
    r"""Dataset-independent data-augmentation with TrivialAugment Wide, as described in
    `"TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation" <https://arxiv.org/abs/2103.10158>`.
    If the image is torch Tensor, it should be of type torch.uint8, and it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".

    Args:
        num_magnitude_bins (int): The number of different magnitude values.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
        """

    def __init__(self, num_magnitude_bins: int = 30, interpolation: InterpolationMode = InterpolationMode.NEAREST,
                 fill: Optional[List[float]] = None) -> None:
        super().__init__()
        self.num_magnitude_bins = num_magnitude_bins
        self.interpolation = interpolation
        self.fill = fill

    def _augmentation_space(self, num_bins: int) -> Dict[str, Tuple[Tensor, bool]]:
        return {
            # op_name: (magnitudes, signed)
            "Identity": (torch.tensor(0.0), False),
            "ShearX": (torch.linspace(0.0, 0.99, num_bins), True),
            "ShearY": (torch.linspace(0.0, 0.99, num_bins), True),
            "TranslateX": (torch.linspace(0.0, 32.0, num_bins), True),
            "TranslateY": (torch.linspace(0.0, 32.0, num_bins), True),
            "Rotate": (torch.linspace(0.0, 135.0, num_bins), True),
            "Brightness": (torch.linspace(0.0, 0.99, num_bins), True),
            "Color": (torch.linspace(0.0, 0.99, num_bins), True),
            "Contrast": (torch.linspace(0.0, 0.99, num_bins), True),
            "Sharpness": (torch.linspace(0.0, 0.99, num_bins), True),
            "Posterize": (8 - (torch.arange(num_bins) / ((num_bins - 1) / 6)).round().int(), False),
            "Solarize": (torch.linspace(256.0, 0.0, num_bins), False),
            "AutoContrast": (torch.tensor(0.0), False),
            "Equalize": (torch.tensor(0.0), False),
        }

    def forward(self, img: Tensor) -> Tensor:
        """
            img (PIL Image or Tensor): Image to be transformed.

        Returns:
            PIL Image or Tensor: Transformed image.
        """
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F.get_image_num_channels(img)
            elif fill is not None:
                fill = [float(f) for f in fill]

        op_meta = self._augmentation_space(self.num_magnitude_bins)
        op_index = int(torch.randint(len(op_meta), (1,)).item())
        op_name = list(op_meta.keys())[op_index]
        magnitudes, signed = op_meta[op_name]
        magnitude = float(magnitudes[torch.randint(len(magnitudes), (1,), dtype=torch.long)].item()) \
            if magnitudes.ndim > 0 else 0.0
        if signed and torch.randint(2, (1,)):
            magnitude *= -1.0

        return _apply_op(img, op_name, magnitude, interpolation=self.interpolation, fill=fill)

    def __repr__(self) -> str:
        s = self.__class__.__name__ + '('
        s += 'num_magnitude_bins={num_magnitude_bins}'
        s += ', interpolation={interpolation}'
        s += ', fill={fill}'
        s += ')'
        return s.format(**self.__dict__)