autoaugment.py 11.7 KB
Newer Older
1
2
3
4
5
import math
import torch

from enum import Enum
from torch import Tensor
6
from typing import List, Tuple, Optional, Dict
7
8
9

from . import functional as F, InterpolationMode

10
11
__all__ = ["AutoAugmentPolicy", "AutoAugment"]

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _apply_op(img: Tensor, op_name: str, magnitude: float,
              interpolation: InterpolationMode, fill: Optional[List[float]]):
    if op_name == "ShearX":
        img = F.affine(img, angle=0.0, translate=[0, 0], scale=1.0, shear=[math.degrees(magnitude), 0.0],
                       interpolation=interpolation, fill=fill)
    elif op_name == "ShearY":
        img = F.affine(img, angle=0.0, translate=[0, 0], scale=1.0, shear=[0.0, math.degrees(magnitude)],
                       interpolation=interpolation, fill=fill)
    elif op_name == "TranslateX":
        img = F.affine(img, angle=0.0, translate=[int(magnitude), 0], scale=1.0,
                       interpolation=interpolation, shear=[0.0, 0.0], fill=fill)
    elif op_name == "TranslateY":
        img = F.affine(img, angle=0.0, translate=[0, int(magnitude)], scale=1.0,
                       interpolation=interpolation, shear=[0.0, 0.0], fill=fill)
    elif op_name == "Rotate":
        img = F.rotate(img, magnitude, interpolation=interpolation, fill=fill)
    elif op_name == "Brightness":
        img = F.adjust_brightness(img, 1.0 + magnitude)
    elif op_name == "Color":
        img = F.adjust_saturation(img, 1.0 + magnitude)
    elif op_name == "Contrast":
        img = F.adjust_contrast(img, 1.0 + magnitude)
    elif op_name == "Sharpness":
        img = F.adjust_sharpness(img, 1.0 + magnitude)
    elif op_name == "Posterize":
        img = F.posterize(img, int(magnitude))
    elif op_name == "Solarize":
        img = F.solarize(img, magnitude)
    elif op_name == "AutoContrast":
        img = F.autocontrast(img)
    elif op_name == "Equalize":
        img = F.equalize(img)
    elif op_name == "Invert":
        img = F.invert(img)
    else:
        raise ValueError("The provided operator {} is not recognized.".format(op_name))
    return img


52
53
class AutoAugmentPolicy(Enum):
    """AutoAugment policies learned on different datasets.
54
    Available policies are IMAGENET, CIFAR10 and SVHN.
55
56
57
58
59
60
61
62
63
    """
    IMAGENET = "imagenet"
    CIFAR10 = "cifar10"
    SVHN = "svhn"


class AutoAugment(torch.nn.Module):
    r"""AutoAugment data augmentation method based on
    `"AutoAugment: Learning Augmentation Strategies from Data" <https://arxiv.org/pdf/1805.09501.pdf>`_.
64
65
66
    If the image is torch Tensor, it should be of type torch.uint8, and it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
67
68
69
70
71
72
73

    Args:
        policy (AutoAugmentPolicy): Desired policy enum defined by
            :class:`torchvision.transforms.autoaugment.AutoAugmentPolicy`. Default is ``AutoAugmentPolicy.IMAGENET``.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
74
75
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
76
77
    """

78
79
80
81
82
83
    def __init__(
        self,
        policy: AutoAugmentPolicy = AutoAugmentPolicy.IMAGENET,
        interpolation: InterpolationMode = InterpolationMode.NEAREST,
        fill: Optional[List[float]] = None
    ) -> None:
84
85
86
87
        super().__init__()
        self.policy = policy
        self.interpolation = interpolation
        self.fill = fill
88
        self.transforms = self._get_transforms(policy)
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    def _get_transforms(
        self,
        policy: AutoAugmentPolicy
    ) -> List[Tuple[Tuple[str, float, Optional[int]], Tuple[str, float, Optional[int]]]]:
        if policy == AutoAugmentPolicy.IMAGENET:
            return [
                (("Posterize", 0.4, 8), ("Rotate", 0.6, 9)),
                (("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)),
                (("Equalize", 0.8, None), ("Equalize", 0.6, None)),
                (("Posterize", 0.6, 7), ("Posterize", 0.6, 6)),
                (("Equalize", 0.4, None), ("Solarize", 0.2, 4)),
                (("Equalize", 0.4, None), ("Rotate", 0.8, 8)),
                (("Solarize", 0.6, 3), ("Equalize", 0.6, None)),
                (("Posterize", 0.8, 5), ("Equalize", 1.0, None)),
                (("Rotate", 0.2, 3), ("Solarize", 0.6, 8)),
                (("Equalize", 0.6, None), ("Posterize", 0.4, 6)),
                (("Rotate", 0.8, 8), ("Color", 0.4, 0)),
                (("Rotate", 0.4, 9), ("Equalize", 0.6, None)),
                (("Equalize", 0.0, None), ("Equalize", 0.8, None)),
                (("Invert", 0.6, None), ("Equalize", 1.0, None)),
                (("Color", 0.6, 4), ("Contrast", 1.0, 8)),
                (("Rotate", 0.8, 8), ("Color", 1.0, 2)),
                (("Color", 0.8, 8), ("Solarize", 0.8, 7)),
                (("Sharpness", 0.4, 7), ("Invert", 0.6, None)),
                (("ShearX", 0.6, 5), ("Equalize", 1.0, None)),
                (("Color", 0.4, 0), ("Equalize", 0.6, None)),
                (("Equalize", 0.4, None), ("Solarize", 0.2, 4)),
                (("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)),
                (("Invert", 0.6, None), ("Equalize", 1.0, None)),
                (("Color", 0.6, 4), ("Contrast", 1.0, 8)),
                (("Equalize", 0.8, None), ("Equalize", 0.6, None)),
            ]
        elif policy == AutoAugmentPolicy.CIFAR10:
            return [
                (("Invert", 0.1, None), ("Contrast", 0.2, 6)),
                (("Rotate", 0.7, 2), ("TranslateX", 0.3, 9)),
                (("Sharpness", 0.8, 1), ("Sharpness", 0.9, 3)),
                (("ShearY", 0.5, 8), ("TranslateY", 0.7, 9)),
                (("AutoContrast", 0.5, None), ("Equalize", 0.9, None)),
                (("ShearY", 0.2, 7), ("Posterize", 0.3, 7)),
                (("Color", 0.4, 3), ("Brightness", 0.6, 7)),
                (("Sharpness", 0.3, 9), ("Brightness", 0.7, 9)),
                (("Equalize", 0.6, None), ("Equalize", 0.5, None)),
                (("Contrast", 0.6, 7), ("Sharpness", 0.6, 5)),
                (("Color", 0.7, 7), ("TranslateX", 0.5, 8)),
                (("Equalize", 0.3, None), ("AutoContrast", 0.4, None)),
                (("TranslateY", 0.4, 3), ("Sharpness", 0.2, 6)),
                (("Brightness", 0.9, 6), ("Color", 0.2, 8)),
                (("Solarize", 0.5, 2), ("Invert", 0.0, None)),
                (("Equalize", 0.2, None), ("AutoContrast", 0.6, None)),
                (("Equalize", 0.2, None), ("Equalize", 0.6, None)),
                (("Color", 0.9, 9), ("Equalize", 0.6, None)),
                (("AutoContrast", 0.8, None), ("Solarize", 0.2, 8)),
                (("Brightness", 0.1, 3), ("Color", 0.7, 0)),
                (("Solarize", 0.4, 5), ("AutoContrast", 0.9, None)),
                (("TranslateY", 0.9, 9), ("TranslateY", 0.7, 9)),
                (("AutoContrast", 0.9, None), ("Solarize", 0.8, 3)),
                (("Equalize", 0.8, None), ("Invert", 0.1, None)),
                (("TranslateY", 0.7, 9), ("AutoContrast", 0.9, None)),
            ]
        elif policy == AutoAugmentPolicy.SVHN:
            return [
                (("ShearX", 0.9, 4), ("Invert", 0.2, None)),
                (("ShearY", 0.9, 8), ("Invert", 0.7, None)),
                (("Equalize", 0.6, None), ("Solarize", 0.6, 6)),
                (("Invert", 0.9, None), ("Equalize", 0.6, None)),
                (("Equalize", 0.6, None), ("Rotate", 0.9, 3)),
                (("ShearX", 0.9, 4), ("AutoContrast", 0.8, None)),
                (("ShearY", 0.9, 8), ("Invert", 0.4, None)),
                (("ShearY", 0.9, 5), ("Solarize", 0.2, 6)),
                (("Invert", 0.9, None), ("AutoContrast", 0.8, None)),
                (("Equalize", 0.6, None), ("Rotate", 0.9, 3)),
                (("ShearX", 0.9, 4), ("Solarize", 0.3, 3)),
                (("ShearY", 0.8, 8), ("Invert", 0.7, None)),
                (("Equalize", 0.9, None), ("TranslateY", 0.6, 6)),
                (("Invert", 0.9, None), ("Equalize", 0.6, None)),
                (("Contrast", 0.3, 3), ("Rotate", 0.8, 4)),
                (("Invert", 0.8, None), ("TranslateY", 0.0, 2)),
                (("ShearY", 0.7, 6), ("Solarize", 0.4, 8)),
                (("Invert", 0.6, None), ("Rotate", 0.8, 4)),
                (("ShearY", 0.3, 7), ("TranslateX", 0.9, 3)),
                (("ShearX", 0.1, 6), ("Invert", 0.6, None)),
                (("Solarize", 0.7, 2), ("TranslateY", 0.6, 7)),
                (("ShearY", 0.8, 4), ("Invert", 0.8, None)),
                (("ShearX", 0.7, 9), ("TranslateY", 0.8, 3)),
                (("ShearY", 0.8, 5), ("AutoContrast", 0.7, None)),
                (("ShearX", 0.7, 2), ("Invert", 0.1, None)),
            ]
        else:
179
            raise ValueError("The provided policy {} is not recognized.".format(policy))
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

    def _get_magnitudes(self, num_bins: int, image_size: List[int]) -> Dict[str, Tuple[Tensor, bool]]:
        return {
            # name: (magnitudes, signed)
            "ShearX": (torch.linspace(0.0, 0.3, num_bins), True),
            "ShearY": (torch.linspace(0.0, 0.3, num_bins), True),
            "TranslateX": (torch.linspace(0.0, 150.0 / 331.0 * image_size[0], num_bins), True),
            "TranslateY": (torch.linspace(0.0, 150.0 / 331.0 * image_size[1], num_bins), True),
            "Rotate": (torch.linspace(0.0, 30.0, num_bins), True),
            "Brightness": (torch.linspace(0.0, 0.9, num_bins), True),
            "Color": (torch.linspace(0.0, 0.9, num_bins), True),
            "Contrast": (torch.linspace(0.0, 0.9, num_bins), True),
            "Sharpness": (torch.linspace(0.0, 0.9, num_bins), True),
            "Posterize": (8 - (torch.arange(num_bins) / ((num_bins - 1) / 4)).round().int(), False),
            "Solarize": (torch.linspace(256.0, 0.0, num_bins), False),
            "AutoContrast": (torch.tensor(0.0), False),
            "Equalize": (torch.tensor(0.0), False),
            "Invert": (torch.tensor(0.0), False),
        }
199
200
201
202
203
204
205
206

    @staticmethod
    def get_params(transform_num: int) -> Tuple[int, Tensor, Tensor]:
        """Get parameters for autoaugment transformation

        Returns:
            params required by the autoaugment transformation
        """
207
        policy_id = int(torch.randint(transform_num, (1,)).item())
208
209
210
211
212
        probs = torch.rand((2,))
        signs = torch.randint(2, (2,))

        return policy_id, probs, signs

213
    def forward(self, img: Tensor) -> Tensor:
214
215
216
217
218
219
220
221
222
        """
            img (PIL Image or Tensor): Image to be transformed.

        Returns:
            PIL Image or Tensor: AutoAugmented image.
        """
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
223
                fill = [float(fill)] * F.get_image_num_channels(img)
224
225
226
227
228
229
230
            elif fill is not None:
                fill = [float(f) for f in fill]

        transform_id, probs, signs = self.get_params(len(self.transforms))

        for i, (op_name, p, magnitude_id) in enumerate(self.transforms[transform_id]):
            if probs[i] <= p:
231
232
233
234
                op_meta = self._get_magnitudes(10, F.get_image_size(img))
                magnitudes, signed = op_meta[op_name]
                magnitude = float(magnitudes[magnitude_id].item()) if magnitude_id is not None else 0.0
                if signed and signs[i] == 0:
235
                    magnitude *= -1.0
236
                img = _apply_op(img, op_name, magnitude, interpolation=self.interpolation, fill=fill)
237
238
239

        return img

240
    def __repr__(self) -> str:
241
        return self.__class__.__name__ + '(policy={}, fill={})'.format(self.policy, self.fill)