autoaugment.py 11.6 KB
Newer Older
1
2
3
4
5
import math
import torch

from enum import Enum
from torch import Tensor
6
from typing import List, Tuple, Optional, Dict
7
8
9

from . import functional as F, InterpolationMode

10
11
__all__ = ["AutoAugmentPolicy", "AutoAugment"]

12
13
14

class AutoAugmentPolicy(Enum):
    """AutoAugment policies learned on different datasets.
15
    Available policies are IMAGENET, CIFAR10 and SVHN.
16
17
18
19
20
21
    """
    IMAGENET = "imagenet"
    CIFAR10 = "cifar10"
    SVHN = "svhn"


22
23
24
def _get_transforms(  # type: ignore[return]
    policy: AutoAugmentPolicy
) -> List[Tuple[Tuple[str, float, Optional[int]], Tuple[str, float, Optional[int]]]]:
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    if policy == AutoAugmentPolicy.IMAGENET:
        return [
            (("Posterize", 0.4, 8), ("Rotate", 0.6, 9)),
            (("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)),
            (("Equalize", 0.8, None), ("Equalize", 0.6, None)),
            (("Posterize", 0.6, 7), ("Posterize", 0.6, 6)),
            (("Equalize", 0.4, None), ("Solarize", 0.2, 4)),
            (("Equalize", 0.4, None), ("Rotate", 0.8, 8)),
            (("Solarize", 0.6, 3), ("Equalize", 0.6, None)),
            (("Posterize", 0.8, 5), ("Equalize", 1.0, None)),
            (("Rotate", 0.2, 3), ("Solarize", 0.6, 8)),
            (("Equalize", 0.6, None), ("Posterize", 0.4, 6)),
            (("Rotate", 0.8, 8), ("Color", 0.4, 0)),
            (("Rotate", 0.4, 9), ("Equalize", 0.6, None)),
            (("Equalize", 0.0, None), ("Equalize", 0.8, None)),
            (("Invert", 0.6, None), ("Equalize", 1.0, None)),
            (("Color", 0.6, 4), ("Contrast", 1.0, 8)),
            (("Rotate", 0.8, 8), ("Color", 1.0, 2)),
            (("Color", 0.8, 8), ("Solarize", 0.8, 7)),
            (("Sharpness", 0.4, 7), ("Invert", 0.6, None)),
            (("ShearX", 0.6, 5), ("Equalize", 1.0, None)),
            (("Color", 0.4, 0), ("Equalize", 0.6, None)),
            (("Equalize", 0.4, None), ("Solarize", 0.2, 4)),
            (("Solarize", 0.6, 5), ("AutoContrast", 0.6, None)),
            (("Invert", 0.6, None), ("Equalize", 1.0, None)),
            (("Color", 0.6, 4), ("Contrast", 1.0, 8)),
            (("Equalize", 0.8, None), ("Equalize", 0.6, None)),
        ]
    elif policy == AutoAugmentPolicy.CIFAR10:
        return [
            (("Invert", 0.1, None), ("Contrast", 0.2, 6)),
            (("Rotate", 0.7, 2), ("TranslateX", 0.3, 9)),
            (("Sharpness", 0.8, 1), ("Sharpness", 0.9, 3)),
            (("ShearY", 0.5, 8), ("TranslateY", 0.7, 9)),
            (("AutoContrast", 0.5, None), ("Equalize", 0.9, None)),
            (("ShearY", 0.2, 7), ("Posterize", 0.3, 7)),
            (("Color", 0.4, 3), ("Brightness", 0.6, 7)),
            (("Sharpness", 0.3, 9), ("Brightness", 0.7, 9)),
            (("Equalize", 0.6, None), ("Equalize", 0.5, None)),
            (("Contrast", 0.6, 7), ("Sharpness", 0.6, 5)),
            (("Color", 0.7, 7), ("TranslateX", 0.5, 8)),
            (("Equalize", 0.3, None), ("AutoContrast", 0.4, None)),
            (("TranslateY", 0.4, 3), ("Sharpness", 0.2, 6)),
            (("Brightness", 0.9, 6), ("Color", 0.2, 8)),
            (("Solarize", 0.5, 2), ("Invert", 0.0, None)),
            (("Equalize", 0.2, None), ("AutoContrast", 0.6, None)),
            (("Equalize", 0.2, None), ("Equalize", 0.6, None)),
            (("Color", 0.9, 9), ("Equalize", 0.6, None)),
            (("AutoContrast", 0.8, None), ("Solarize", 0.2, 8)),
            (("Brightness", 0.1, 3), ("Color", 0.7, 0)),
            (("Solarize", 0.4, 5), ("AutoContrast", 0.9, None)),
            (("TranslateY", 0.9, 9), ("TranslateY", 0.7, 9)),
            (("AutoContrast", 0.9, None), ("Solarize", 0.8, 3)),
            (("Equalize", 0.8, None), ("Invert", 0.1, None)),
            (("TranslateY", 0.7, 9), ("AutoContrast", 0.9, None)),
        ]
    elif policy == AutoAugmentPolicy.SVHN:
        return [
            (("ShearX", 0.9, 4), ("Invert", 0.2, None)),
            (("ShearY", 0.9, 8), ("Invert", 0.7, None)),
            (("Equalize", 0.6, None), ("Solarize", 0.6, 6)),
            (("Invert", 0.9, None), ("Equalize", 0.6, None)),
            (("Equalize", 0.6, None), ("Rotate", 0.9, 3)),
            (("ShearX", 0.9, 4), ("AutoContrast", 0.8, None)),
            (("ShearY", 0.9, 8), ("Invert", 0.4, None)),
            (("ShearY", 0.9, 5), ("Solarize", 0.2, 6)),
            (("Invert", 0.9, None), ("AutoContrast", 0.8, None)),
            (("Equalize", 0.6, None), ("Rotate", 0.9, 3)),
            (("ShearX", 0.9, 4), ("Solarize", 0.3, 3)),
            (("ShearY", 0.8, 8), ("Invert", 0.7, None)),
            (("Equalize", 0.9, None), ("TranslateY", 0.6, 6)),
            (("Invert", 0.9, None), ("Equalize", 0.6, None)),
            (("Contrast", 0.3, 3), ("Rotate", 0.8, 4)),
            (("Invert", 0.8, None), ("TranslateY", 0.0, 2)),
            (("ShearY", 0.7, 6), ("Solarize", 0.4, 8)),
            (("Invert", 0.6, None), ("Rotate", 0.8, 4)),
            (("ShearY", 0.3, 7), ("TranslateX", 0.9, 3)),
            (("ShearX", 0.1, 6), ("Invert", 0.6, None)),
            (("Solarize", 0.7, 2), ("TranslateY", 0.6, 7)),
            (("ShearY", 0.8, 4), ("Invert", 0.8, None)),
            (("ShearX", 0.7, 9), ("TranslateY", 0.8, 3)),
            (("ShearY", 0.8, 5), ("AutoContrast", 0.7, None)),
            (("ShearX", 0.7, 2), ("Invert", 0.1, None)),
        ]


111
def _get_magnitudes() -> Dict[str, Tuple[Optional[Tensor], Optional[bool]]]:
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    _BINS = 10
    return {
        # name: (magnitudes, signed)
        "ShearX": (torch.linspace(0.0, 0.3, _BINS), True),
        "ShearY": (torch.linspace(0.0, 0.3, _BINS), True),
        "TranslateX": (torch.linspace(0.0, 150.0 / 331.0, _BINS), True),
        "TranslateY": (torch.linspace(0.0, 150.0 / 331.0, _BINS), True),
        "Rotate": (torch.linspace(0.0, 30.0, _BINS), True),
        "Brightness": (torch.linspace(0.0, 0.9, _BINS), True),
        "Color": (torch.linspace(0.0, 0.9, _BINS), True),
        "Contrast": (torch.linspace(0.0, 0.9, _BINS), True),
        "Sharpness": (torch.linspace(0.0, 0.9, _BINS), True),
        "Posterize": (torch.tensor([8, 8, 7, 7, 6, 6, 5, 5, 4, 4]), False),
        "Solarize": (torch.linspace(256.0, 0.0, _BINS), False),
        "AutoContrast": (None, None),
        "Equalize": (None, None),
        "Invert": (None, None),
    }


class AutoAugment(torch.nn.Module):
    r"""AutoAugment data augmentation method based on
    `"AutoAugment: Learning Augmentation Strategies from Data" <https://arxiv.org/pdf/1805.09501.pdf>`_.
135
136
137
    If the image is torch Tensor, it should be of type torch.uint8, and it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
138
139
140
141
142
143
144

    Args:
        policy (AutoAugmentPolicy): Desired policy enum defined by
            :class:`torchvision.transforms.autoaugment.AutoAugmentPolicy`. Default is ``AutoAugmentPolicy.IMAGENET``.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
145
146
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
147
148
    """

149
150
151
152
153
154
    def __init__(
        self,
        policy: AutoAugmentPolicy = AutoAugmentPolicy.IMAGENET,
        interpolation: InterpolationMode = InterpolationMode.NEAREST,
        fill: Optional[List[float]] = None
    ) -> None:
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        super().__init__()
        self.policy = policy
        self.interpolation = interpolation
        self.fill = fill

        self.transforms = _get_transforms(policy)
        if self.transforms is None:
            raise ValueError("The provided policy {} is not recognized.".format(policy))
        self._op_meta = _get_magnitudes()

    @staticmethod
    def get_params(transform_num: int) -> Tuple[int, Tensor, Tensor]:
        """Get parameters for autoaugment transformation

        Returns:
            params required by the autoaugment transformation
        """
172
        policy_id = int(torch.randint(transform_num, (1,)).item())
173
174
175
176
177
178
179
180
        probs = torch.rand((2,))
        signs = torch.randint(2, (2,))

        return policy_id, probs, signs

    def _get_op_meta(self, name: str) -> Tuple[Optional[Tensor], Optional[bool]]:
        return self._op_meta[name]

181
    def forward(self, img: Tensor) -> Tensor:
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        """
            img (PIL Image or Tensor): Image to be transformed.

        Returns:
            PIL Image or Tensor: AutoAugmented image.
        """
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            elif fill is not None:
                fill = [float(f) for f in fill]

        transform_id, probs, signs = self.get_params(len(self.transforms))

        for i, (op_name, p, magnitude_id) in enumerate(self.transforms[transform_id]):
            if probs[i] <= p:
                magnitudes, signed = self._get_op_meta(op_name)
                magnitude = float(magnitudes[magnitude_id].item()) \
                    if magnitudes is not None and magnitude_id is not None else 0.0
                if signed is not None and signed and signs[i] == 0:
                    magnitude *= -1.0

                if op_name == "ShearX":
                    img = F.affine(img, angle=0.0, translate=[0, 0], scale=1.0, shear=[math.degrees(magnitude), 0.0],
                                   interpolation=self.interpolation, fill=fill)
                elif op_name == "ShearY":
                    img = F.affine(img, angle=0.0, translate=[0, 0], scale=1.0, shear=[0.0, math.degrees(magnitude)],
                                   interpolation=self.interpolation, fill=fill)
                elif op_name == "TranslateX":
                    img = F.affine(img, angle=0.0, translate=[int(F._get_image_size(img)[0] * magnitude), 0], scale=1.0,
                                   interpolation=self.interpolation, shear=[0.0, 0.0], fill=fill)
                elif op_name == "TranslateY":
                    img = F.affine(img, angle=0.0, translate=[0, int(F._get_image_size(img)[1] * magnitude)], scale=1.0,
                                   interpolation=self.interpolation, shear=[0.0, 0.0], fill=fill)
                elif op_name == "Rotate":
                    img = F.rotate(img, magnitude, interpolation=self.interpolation, fill=fill)
                elif op_name == "Brightness":
                    img = F.adjust_brightness(img, 1.0 + magnitude)
                elif op_name == "Color":
                    img = F.adjust_saturation(img, 1.0 + magnitude)
                elif op_name == "Contrast":
                    img = F.adjust_contrast(img, 1.0 + magnitude)
                elif op_name == "Sharpness":
                    img = F.adjust_sharpness(img, 1.0 + magnitude)
                elif op_name == "Posterize":
                    img = F.posterize(img, int(magnitude))
                elif op_name == "Solarize":
                    img = F.solarize(img, magnitude)
                elif op_name == "AutoContrast":
                    img = F.autocontrast(img)
                elif op_name == "Equalize":
                    img = F.equalize(img)
                elif op_name == "Invert":
                    img = F.invert(img)
                else:
                    raise ValueError("The provided operator {} is not recognized.".format(op_name))

        return img

242
    def __repr__(self) -> str:
243
        return self.__class__.__name__ + '(policy={}, fill={})'.format(self.policy, self.fill)