utils.py 20.7 KB
Newer Older
1
import math
2
import pathlib
3
import warnings
Kai Zhang's avatar
Kai Zhang committed
4
from types import FunctionType
5
from typing import Any, BinaryIO, List, Optional, Tuple, Union
6

7
import numpy as np
8
import torch
9
from PIL import Image, ImageColor, ImageDraw, ImageFont
10

11
12
13
14
15
16
17
18
__all__ = [
    "make_grid",
    "save_image",
    "draw_bounding_boxes",
    "draw_segmentation_masks",
    "draw_keypoints",
    "flow_to_image",
]
19

20

21
@torch.no_grad()
22
def make_grid(
23
    tensor: Union[torch.Tensor, List[torch.Tensor]],
24
25
26
    nrow: int = 8,
    padding: int = 2,
    normalize: bool = False,
27
    value_range: Optional[Tuple[int, int]] = None,
28
    scale_each: bool = False,
29
    pad_value: float = 0.0,
30
    **kwargs,
31
) -> torch.Tensor:
32
33
    """
    Make a grid of images.
34

35
36
37
    Args:
        tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
            or a list of images all of the same size.
38
        nrow (int, optional): Number of images displayed in each row of the grid.
Tongzhou Wang's avatar
Tongzhou Wang committed
39
40
            The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
        padding (int, optional): amount of padding. Default: ``2``.
41
        normalize (bool, optional): If True, shift the image to the range (0, 1),
42
            by the min and max values specified by ``value_range``. Default: ``False``.
43
        value_range (tuple, optional): tuple (min, max) where min and max are numbers,
44
45
            then these numbers are used to normalize the image. By default, min and max
            are computed from the tensor.
Tongzhou Wang's avatar
Tongzhou Wang committed
46
47
48
        scale_each (bool, optional): If ``True``, scale each image in the batch of
            images separately rather than the (min, max) over all images. Default: ``False``.
        pad_value (float, optional): Value for the padded pixels. Default: ``0``.
49

50
51
    Returns:
        grid (Tensor): the tensor containing grid of images.
52
    """
Kai Zhang's avatar
Kai Zhang committed
53
54
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(make_grid)
55
56
    if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
        raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}")
57
58
59
60
61

    if "range" in kwargs.keys():
        warning = "range will be deprecated, please use value_range instead."
        warnings.warn(warning)
        value_range = kwargs["range"]
62

63
    # if list of tensors, convert to a 4D mini-batch Tensor
64
    if isinstance(tensor, list):
65
        tensor = torch.stack(tensor, dim=0)
66

67
    if tensor.dim() == 2:  # single image H x W
68
        tensor = tensor.unsqueeze(0)
69
    if tensor.dim() == 3:  # single image
70
        if tensor.size(0) == 1:  # if single-channel, convert to 3-channel
Adam Lerer's avatar
Adam Lerer committed
71
            tensor = torch.cat((tensor, tensor, tensor), 0)
72
        tensor = tensor.unsqueeze(0)
73

74
    if tensor.dim() == 4 and tensor.size(1) == 1:  # single-channel images
75
        tensor = torch.cat((tensor, tensor, tensor), 1)
76
77

    if normalize is True:
78
        tensor = tensor.clone()  # avoid modifying tensor in-place
79
        if value_range is not None:
80
81
82
            assert isinstance(
                value_range, tuple
            ), "value_range has to be a tuple (min, max) if specified. min and max are numbers"
83

84
85
86
        def norm_ip(img, low, high):
            img.clamp_(min=low, max=high)
            img.sub_(low).div_(max(high - low, 1e-5))
87

88
89
90
        def norm_range(t, value_range):
            if value_range is not None:
                norm_ip(t, value_range[0], value_range[1])
91
            else:
92
                norm_ip(t, float(t.min()), float(t.max()))
93
94
95

        if scale_each is True:
            for t in tensor:  # loop over mini-batch dimension
96
                norm_range(t, value_range)
97
        else:
98
            norm_range(tensor, value_range)
99

Kai Zhang's avatar
Kai Zhang committed
100
    assert isinstance(tensor, torch.Tensor)
101
    if tensor.size(0) == 1:
102
        return tensor.squeeze(0)
103

104
105
106
    # make the mini-batch of images into a grid
    nmaps = tensor.size(0)
    xmaps = min(nrow, nmaps)
107
    ymaps = int(math.ceil(float(nmaps) / xmaps))
108
    height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
109
110
    num_channels = tensor.size(1)
    grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
111
    k = 0
112
113
    for y in range(ymaps):
        for x in range(xmaps):
114
115
            if k >= nmaps:
                break
116
117
118
119
120
            # Tensor.copy_() is a valid method but seems to be missing from the stubs
            # https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
            grid.narrow(1, y * height + padding, height - padding).narrow(  # type: ignore[attr-defined]
                2, x * width + padding, width - padding
            ).copy_(tensor[k])
121
122
123
124
            k = k + 1
    return grid


125
@torch.no_grad()
126
def save_image(
127
    tensor: Union[torch.Tensor, List[torch.Tensor]],
128
    fp: Union[str, pathlib.Path, BinaryIO],
129
    format: Optional[str] = None,
130
    **kwargs,
131
) -> None:
132
133
    """
    Save a given Tensor into an image file.
134
135
136
137

    Args:
        tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
            saves the tensor as a grid of images by calling ``make_grid``.
138
        fp (string or file object): A filename or a file object
139
140
        format(Optional):  If omitted, the format to use is determined from the filename extension.
            If a file object was used instead of a filename, this parameter should always be used.
141
        **kwargs: Other arguments are documented in ``make_grid``.
142
    """
143

Kai Zhang's avatar
Kai Zhang committed
144
145
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(save_image)
146
    grid = make_grid(tensor, **kwargs)
147
    # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
148
    ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
149
    im = Image.fromarray(ndarr)
150
    im.save(fp, format=format)
151
152
153
154
155
156
157


@torch.no_grad()
def draw_bounding_boxes(
    image: torch.Tensor,
    boxes: torch.Tensor,
    labels: Optional[List[str]] = None,
158
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
159
    fill: Optional[bool] = False,
160
161
    width: int = 1,
    font: Optional[str] = None,
162
    font_size: int = 10,
163
164
165
166
167
) -> torch.Tensor:

    """
    Draws bounding boxes on given image.
    The values of the input image should be uint8 between 0 and 255.
168
    If fill is True, Resulting Tensor should be saved as PNG image.
169
170

    Args:
171
        image (Tensor): Tensor of shape (C x H x W) and dtype uint8.
172
        boxes (Tensor): Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that
173
174
175
            the boxes are absolute coordinates with respect to the image. In other words: `0 <= xmin < xmax < W` and
            `0 <= ymin < ymax < H`.
        labels (List[str]): List containing the labels of bounding boxes.
176
177
178
        colors (color or list of colors, optional): List containing the colors
            of the boxes or single color for all boxes. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
179
            By default, random colors are generated for boxes.
180
        fill (bool): If `True` fills the bounding box with specified color.
181
182
183
184
185
        width (int): Width of bounding box.
        font (str): A filename containing a TrueType font. If the file is not found in this filename, the loader may
            also search in other directories, such as the `fonts/` directory on Windows or `/Library/Fonts/`,
            `/System/Library/Fonts/` and `~/Library/Fonts/` on macOS.
        font_size (int): The requested font size in points.
186
187
188

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with bounding boxes plotted.
189
190
    """

Kai Zhang's avatar
Kai Zhang committed
191
192
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_bounding_boxes)
193
194
195
196
197
198
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Tensor expected, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"Tensor uint8 expected, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
199
200
201
    elif image.size(0) not in {1, 3}:
        raise ValueError("Only grayscale and RGB images are supported")

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    num_boxes = boxes.shape[0]

    if labels is None:
        labels: Union[List[str], List[None]] = [None] * num_boxes  # type: ignore[no-redef]
    elif len(labels) != num_boxes:
        raise ValueError(
            f"Number of boxes ({num_boxes}) and labels ({len(labels)}) mismatch. Please specify labels for each box."
        )

    if colors is None:
        colors = _generate_color_palette(num_boxes)
    elif isinstance(colors, list):
        if len(colors) < num_boxes:
            raise ValueError(f"Number of colors ({len(colors)}) is less than number of boxes ({num_boxes}). ")
    else:  # colors specifies a single color for all boxes
        colors = [colors] * num_boxes

    colors = [(ImageColor.getrgb(color) if isinstance(color, str) else color) for color in colors]

    # Handle Grayscale images
222
223
    if image.size(0) == 1:
        image = torch.tile(image, (3, 1, 1))
224

225
    ndarr = image.permute(1, 2, 0).cpu().numpy()
226
227
228
    img_to_draw = Image.fromarray(ndarr)
    img_boxes = boxes.to(torch.int64).tolist()

229
230
231
232
233
    if fill:
        draw = ImageDraw.Draw(img_to_draw, "RGBA")
    else:
        draw = ImageDraw.Draw(img_to_draw)

234
    txt_font = ImageFont.load_default() if font is None else ImageFont.truetype(font=font, size=font_size)
235

236
    for bbox, color, label in zip(img_boxes, colors, labels):  # type: ignore[arg-type]
237
        if fill:
238
            fill_color = color + (100,)
239
240
241
            draw.rectangle(bbox, width=width, outline=color, fill=fill_color)
        else:
            draw.rectangle(bbox, width=width, outline=color)
242

243
        if label is not None:
244
            margin = width + 1
245
            draw.text((bbox[0] + margin, bbox[1] + margin), label, fill=color, font=txt_font)
246

247
    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
248
249
250
251
252
253


@torch.no_grad()
def draw_segmentation_masks(
    image: torch.Tensor,
    masks: torch.Tensor,
254
    alpha: float = 0.8,
255
    colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
256
257
258
259
260
261
262
) -> torch.Tensor:

    """
    Draws segmentation masks on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
263
264
265
266
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
        alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
            0 means full transparency, 1 means no transparency.
267
268
269
270
        colors (color or list of colors, optional): List containing the colors
            of the masks or single color for all masks. The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
            By default, random colors are generated for each mask.
271
272

    Returns:
273
        img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
274
275
    """

Kai Zhang's avatar
Kai Zhang committed
276
277
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_segmentation_masks)
278
    if not isinstance(image, torch.Tensor):
279
        raise TypeError(f"The image must be a tensor, got {type(image)}")
280
    elif image.dtype != torch.uint8:
281
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
282
283
284
285
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")
286
287
288
289
290
291
292
293
    if masks.ndim == 2:
        masks = masks[None, :, :]
    if masks.ndim != 3:
        raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
    if masks.dtype != torch.bool:
        raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
    if masks.shape[-2:] != image.shape[-2:]:
        raise ValueError("The image and the masks must have the same height and width")
294
295

    num_masks = masks.size()[0]
296
297
    if colors is not None and num_masks > len(colors):
        raise ValueError(f"There are more masks ({num_masks}) than colors ({len(colors)})")
298
299

    if colors is None:
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        colors = _generate_color_palette(num_masks)

    if not isinstance(colors, list):
        colors = [colors]
    if not isinstance(colors[0], (tuple, str)):
        raise ValueError("colors must be a tuple or a string, or a list thereof")
    if isinstance(colors[0], tuple) and len(colors[0]) != 3:
        raise ValueError("It seems that you passed a tuple of colors instead of a list of colors")

    out_dtype = torch.uint8

    colors_ = []
    for color in colors:
        if isinstance(color, str):
            color = ImageColor.getrgb(color)
315
        colors_.append(torch.tensor(color, dtype=out_dtype))
316

317
318
319
320
    img_to_draw = image.detach().clone()
    # TODO: There might be a way to vectorize this
    for mask, color in zip(masks, colors_):
        img_to_draw[:, mask] = color[:, None]
321

322
323
    out = image * (1 - alpha) + img_to_draw * alpha
    return out.to(out_dtype)
324
325


326
327
328
329
@torch.no_grad()
def draw_keypoints(
    image: torch.Tensor,
    keypoints: torch.Tensor,
330
    connectivity: Optional[List[Tuple[int, int]]] = None,
331
332
333
334
335
336
337
338
339
340
341
342
343
    colors: Optional[Union[str, Tuple[int, int, int]]] = None,
    radius: int = 2,
    width: int = 3,
) -> torch.Tensor:

    """
    Draws Keypoints on given RGB image.
    The values of the input image should be uint8 between 0 and 255.

    Args:
        image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
        keypoints (Tensor): Tensor of shape (num_instances, K, 2) the K keypoints location for each of the N instances,
            in the format [x, y].
344
        connectivity (List[Tuple[int, int]]]): A List of tuple where,
345
346
347
348
349
350
351
352
353
354
            each tuple contains pair of keypoints to be connected.
        colors (str, Tuple): The color can be represented as
            PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
        radius (int): Integer denoting radius of keypoint.
        width (int): Integer denoting width of line connecting keypoints.

    Returns:
        img (Tensor[C, H, W]): Image Tensor of dtype uint8 with keypoints drawn.
    """

Kai Zhang's avatar
Kai Zhang committed
355
356
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(draw_keypoints)
357
358
359
360
361
362
363
364
365
366
367
368
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"The image must be a tensor, got {type(image)}")
    elif image.dtype != torch.uint8:
        raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
    elif image.dim() != 3:
        raise ValueError("Pass individual images, not batches")
    elif image.size()[0] != 3:
        raise ValueError("Pass an RGB image. Other Image formats are not supported")

    if keypoints.ndim != 3:
        raise ValueError("keypoints must be of shape (num_instances, K, 2)")

369
    ndarr = image.permute(1, 2, 0).cpu().numpy()
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    img_to_draw = Image.fromarray(ndarr)
    draw = ImageDraw.Draw(img_to_draw)
    img_kpts = keypoints.to(torch.int64).tolist()

    for kpt_id, kpt_inst in enumerate(img_kpts):
        for inst_id, kpt in enumerate(kpt_inst):
            x1 = kpt[0] - radius
            x2 = kpt[0] + radius
            y1 = kpt[1] - radius
            y2 = kpt[1] + radius
            draw.ellipse([x1, y1, x2, y2], fill=colors, outline=None, width=0)

        if connectivity:
            for connection in connectivity:
                start_pt_x = kpt_inst[connection[0]][0]
                start_pt_y = kpt_inst[connection[0]][1]

                end_pt_x = kpt_inst[connection[1]][0]
                end_pt_y = kpt_inst[connection[1]][1]

                draw.line(
                    ((start_pt_x, start_pt_y), (end_pt_x, end_pt_y)),
                    width=width,
                )

    return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)


398
399
400
401
402
403
404
405
# Flow visualization code adapted from https://github.com/tomrunia/OpticalFlow_Visualization
@torch.no_grad()
def flow_to_image(flow: torch.Tensor) -> torch.Tensor:

    """
    Converts a flow to an RGB image.

    Args:
406
        flow (Tensor): Flow of shape (N, 2, H, W) or (2, H, W) and dtype torch.float.
407
408

    Returns:
409
410
        img (Tensor): Image Tensor of dtype uint8 where each color corresponds
            to a given flow direction. Shape is (N, 3, H, W) or (3, H, W) depending on the input.
411
412
413
414
415
    """

    if flow.dtype != torch.float:
        raise ValueError(f"Flow should be of dtype torch.float, got {flow.dtype}.")

416
417
418
    orig_shape = flow.shape
    if flow.ndim == 3:
        flow = flow[None]  # Add batch dim
419

420
421
422
423
    if flow.ndim != 4 or flow.shape[1] != 2:
        raise ValueError(f"Input flow should have shape (2, H, W) or (N, 2, H, W), got {orig_shape}.")

    max_norm = torch.sum(flow ** 2, dim=1).sqrt().max()
424
425
    epsilon = torch.finfo((flow).dtype).eps
    normalized_flow = flow / (max_norm + epsilon)
426
427
428
429
430
    img = _normalized_flow_to_image(normalized_flow)

    if len(orig_shape) == 3:
        img = img[0]  # Remove batch dim
    return img
431
432
433
434
435
436


@torch.no_grad()
def _normalized_flow_to_image(normalized_flow: torch.Tensor) -> torch.Tensor:

    """
437
    Converts a batch of normalized flow to an RGB image.
438
439

    Args:
440
        normalized_flow (torch.Tensor): Normalized flow tensor of shape (N, 2, H, W)
441
    Returns:
442
       img (Tensor(N, 3, H, W)): Flow visualization image of dtype uint8.
443
444
    """

445
446
    N, _, H, W = normalized_flow.shape
    flow_image = torch.zeros((N, 3, H, W), dtype=torch.uint8)
447
448
    colorwheel = _make_colorwheel()  # shape [55x3]
    num_cols = colorwheel.shape[0]
449
450
    norm = torch.sum(normalized_flow ** 2, dim=1).sqrt()
    a = torch.atan2(-normalized_flow[:, 1, :, :], -normalized_flow[:, 0, :, :]) / torch.pi
451
452
453
454
455
456
457
458
459
460
461
462
    fk = (a + 1) / 2 * (num_cols - 1)
    k0 = torch.floor(fk).to(torch.long)
    k1 = k0 + 1
    k1[k1 == num_cols] = 0
    f = fk - k0

    for c in range(colorwheel.shape[1]):
        tmp = colorwheel[:, c]
        col0 = tmp[k0] / 255.0
        col1 = tmp[k1] / 255.0
        col = (1 - f) * col0 + f * col1
        col = 1 - norm * (1 - col)
463
        flow_image[:, c, :, :] = torch.floor(255 * col)
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    return flow_image


def _make_colorwheel() -> torch.Tensor:
    """
    Generates a color wheel for optical flow visualization as presented in:
    Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
    URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf.

    Returns:
        colorwheel (Tensor[55, 3]): Colorwheel Tensor.
    """

    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR
    colorwheel = torch.zeros((ncols, 3))
    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = torch.floor(255 * torch.arange(0, RY) / RY)
    col = col + RY
    # YG
    colorwheel[col : col + YG, 0] = 255 - torch.floor(255 * torch.arange(0, YG) / YG)
    colorwheel[col : col + YG, 1] = 255
    col = col + YG
    # GC
    colorwheel[col : col + GC, 1] = 255
    colorwheel[col : col + GC, 2] = torch.floor(255 * torch.arange(0, GC) / GC)
    col = col + GC
    # CB
    colorwheel[col : col + CB, 1] = 255 - torch.floor(255 * torch.arange(CB) / CB)
    colorwheel[col : col + CB, 2] = 255
    col = col + CB
    # BM
    colorwheel[col : col + BM, 2] = 255
    colorwheel[col : col + BM, 0] = torch.floor(255 * torch.arange(0, BM) / BM)
    col = col + BM
    # MR
    colorwheel[col : col + MR, 2] = 255 - torch.floor(255 * torch.arange(MR) / MR)
    colorwheel[col : col + MR, 0] = 255
    return colorwheel


514
def _generate_color_palette(num_objects: int):
515
    palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
516
    return [tuple((i * palette) % 255) for i in range(num_objects)]
517
518


Kai Zhang's avatar
Kai Zhang committed
519
def _log_api_usage_once(obj: Any) -> None:
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

    """
    Logs API usage(module and name) within an organization.
    In a large ecosystem, it's often useful to track the PyTorch and
    TorchVision APIs usage. This API provides the similar functionality to the
    logging module in the Python stdlib. It can be used for debugging purpose
    to log which methods are used and by default it is inactive, unless the user
    manually subscribes a logger via the `SetAPIUsageLogger method <https://github.com/pytorch/pytorch/blob/eb3b9fe719b21fae13c7a7cf3253f970290a573e/c10/util/Logging.cpp#L114>`_.
    Please note it is triggered only once for the same API call within a process.
    It does not collect any data from open-source users since it is no-op by default.
    For more information, please refer to
    * PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging;
    * Logging policy: https://github.com/pytorch/vision/issues/5052;

    Args:
        obj (class instance or method): an object to extract info from.
    """
Kai Zhang's avatar
Kai Zhang committed
537
    if not obj.__module__.startswith("torchvision"):
538
        return
Kai Zhang's avatar
Kai Zhang committed
539
540
541
542
    name = obj.__class__.__name__
    if isinstance(obj, FunctionType):
        name = obj.__name__
    torch._C._log_api_usage_once(f"{obj.__module__}.{name}")