stl10.py 7.22 KB
Newer Older
Elad Hoffer's avatar
Elad Hoffer committed
1
2
3
4
from PIL import Image
import os
import os.path
import numpy as np
5
from typing import Any, Callable, Optional, Tuple
Elad Hoffer's avatar
Elad Hoffer committed
6

Francisco Massa's avatar
Francisco Massa committed
7
from .vision import VisionDataset
8
from .utils import check_integrity, download_and_extract_archive, verify_str_arg
Elad Hoffer's avatar
Elad Hoffer committed
9

Francisco Massa's avatar
Francisco Massa committed
10
11

class STL10(VisionDataset):
12
13
14
15
16
17
18
    """`STL10 <https://cs.stanford.edu/~acoates/stl10/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
            ``stl10_binary`` exists.
        split (string): One of {'train', 'test', 'unlabeled', 'train+unlabeled'}.
            Accordingly dataset is selected.
19
20
21
        folds (int, optional): One of {0-9} or None.
            For training, loads one of the 10 pre-defined folds of 1k samples for the
             standard evaluation procedure. If no value is passed, loads the 5k samples.
22
23
24
25
26
27
28
29
30
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
Elad Hoffer's avatar
Elad Hoffer committed
31
32
33
34
35
    base_folder = 'stl10_binary'
    url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz"
    filename = "stl10_binary.tar.gz"
    tgz_md5 = '91f7769df0f17e558f3565bffb0c7dfb'
    class_names_file = 'class_names.txt'
36
    folds_list_file = 'fold_indices.txt'
Elad Hoffer's avatar
Elad Hoffer committed
37
38
39
40
41
42
43
44
45
46
    train_list = [
        ['train_X.bin', '918c2871b30a85fa023e0c44e0bee87f'],
        ['train_y.bin', '5a34089d4802c674881badbb80307741'],
        ['unlabeled_X.bin', '5242ba1fed5e4be9e1e742405eb56ca4']
    ]

    test_list = [
        ['test_X.bin', '7f263ba9f9e0b06b93213547f721ac82'],
        ['test_y.bin', '36f9794fa4beb8a2c72628de14fa638e']
    ]
47
    splits = ('train', 'train+unlabeled', 'unlabeled', 'test')
Elad Hoffer's avatar
Elad Hoffer committed
48

49
50
51
52
53
54
55
56
57
    def __init__(
            self,
            root: str,
            split: str = "train",
            folds: Optional[int] = None,
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
            download: bool = False,
    ) -> None:
58
59
        super(STL10, self).__init__(root, transform=transform,
                                    target_transform=target_transform)
60
        self.split = verify_str_arg(split, "split", self.splits)
61
        self.folds = self._verify_folds(folds)
Elad Hoffer's avatar
Elad Hoffer committed
62
63
64

        if download:
            self.download()
65
        elif not self._check_integrity():
Elad Hoffer's avatar
Elad Hoffer committed
66
            raise RuntimeError(
soumith's avatar
soumith committed
67
68
                'Dataset not found or corrupted. '
                'You can use download=True to download it')
Elad Hoffer's avatar
Elad Hoffer committed
69
70

        # now load the picked numpy arrays
71
        self.labels: np.ndarray
Elad Hoffer's avatar
Elad Hoffer committed
72
73
74
        if self.split == 'train':
            self.data, self.labels = self.__loadfile(
                self.train_list[0][0], self.train_list[1][0])
75
76
            self.__load_folds(folds)

Elad Hoffer's avatar
Elad Hoffer committed
77
78
79
        elif self.split == 'train+unlabeled':
            self.data, self.labels = self.__loadfile(
                self.train_list[0][0], self.train_list[1][0])
80
            self.__load_folds(folds)
Elad Hoffer's avatar
Elad Hoffer committed
81
82
83
84
85
86
87
            unlabeled_data, _ = self.__loadfile(self.train_list[2][0])
            self.data = np.concatenate((self.data, unlabeled_data))
            self.labels = np.concatenate(
                (self.labels, np.asarray([-1] * unlabeled_data.shape[0])))

        elif self.split == 'unlabeled':
            self.data, _ = self.__loadfile(self.train_list[2][0])
88
            self.labels = np.asarray([-1] * self.data.shape[0])
Elad Hoffer's avatar
Elad Hoffer committed
89
90
91
92
93
        else:  # self.split == 'test':
            self.data, self.labels = self.__loadfile(
                self.test_list[0][0], self.test_list[1][0])

        class_file = os.path.join(
moskomule's avatar
moskomule committed
94
            self.root, self.base_folder, self.class_names_file)
Elad Hoffer's avatar
Elad Hoffer committed
95
96
97
98
        if os.path.isfile(class_file):
            with open(class_file) as f:
                self.classes = f.read().splitlines()

99
    def _verify_folds(self, folds: Optional[int]) -> Optional[int]:
100
101
102
103
104
105
106
107
108
109
110
111
        if folds is None:
            return folds
        elif isinstance(folds, int):
            if folds in range(10):
                return folds
            msg = ("Value for argument folds should be in the range [0, 10), "
                   "but got {}.")
            raise ValueError(msg.format(folds))
        else:
            msg = "Expected type None or int for argument folds, but got type {}."
            raise ValueError(msg.format(type(folds)))

112
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
113
114
115
116
117
118
119
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
120
        target: Optional[int]
Elad Hoffer's avatar
Elad Hoffer committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        if self.labels is not None:
            img, target = self.data[index], int(self.labels[index])
        else:
            img, target = self.data[index], None

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(np.transpose(img, (1, 2, 0)))

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

138
    def __len__(self) -> int:
Elad Hoffer's avatar
Elad Hoffer committed
139
140
        return self.data.shape[0]

141
    def __loadfile(self, data_file: str, labels_file: Optional[str] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]:
Elad Hoffer's avatar
Elad Hoffer committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        labels = None
        if labels_file:
            path_to_labels = os.path.join(
                self.root, self.base_folder, labels_file)
            with open(path_to_labels, 'rb') as f:
                labels = np.fromfile(f, dtype=np.uint8) - 1  # 0-based

        path_to_data = os.path.join(self.root, self.base_folder, data_file)
        with open(path_to_data, 'rb') as f:
            # read whole file in uint8 chunks
            everything = np.fromfile(f, dtype=np.uint8)
            images = np.reshape(everything, (-1, 3, 96, 96))
            images = np.transpose(images, (0, 1, 3, 2))

        return images, labels
157

158
    def _check_integrity(self) -> bool:
Francisco Massa's avatar
Francisco Massa committed
159
160
161
162
163
164
165
166
        root = self.root
        for fentry in (self.train_list + self.test_list):
            filename, md5 = fentry[0], fentry[1]
            fpath = os.path.join(root, self.base_folder, filename)
            if not check_integrity(fpath, md5):
                return False
        return True

167
    def download(self) -> None:
Francisco Massa's avatar
Francisco Massa committed
168
169
170
        if self._check_integrity():
            print('Files already downloaded and verified')
            return
171
        download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
172
        self._check_integrity()
Francisco Massa's avatar
Francisco Massa committed
173

174
    def extra_repr(self) -> str:
175
        return "Split: {split}".format(**self.__dict__)
176

177
    def __load_folds(self, folds: Optional[int]) -> None:
178
        # loads one of the folds if specified
179
180
181
182
183
184
185
186
        if folds is None:
            return
        path_to_folds = os.path.join(
            self.root, self.base_folder, self.folds_list_file)
        with open(path_to_folds, 'r') as f:
            str_idx = f.read().splitlines()[folds]
            list_idx = np.fromstring(str_idx, dtype=np.uint8, sep=' ')
            self.data, self.labels = self.data[list_idx, :, :, :], self.labels[list_idx]