functional_tensor.py 37.1 KB
Newer Older
vfdev's avatar
vfdev committed
1
import warnings
vfdev's avatar
vfdev committed
2
from typing import Optional, Dict, Tuple
vfdev's avatar
vfdev committed
3

4
import torch
5
from torch import Tensor
6
from torch.nn.functional import grid_sample
7
from torch.jit.annotations import List, BroadcastingList2
8
9


vfdev's avatar
vfdev committed
10
11
def _is_tensor_a_torch_image(x: Tensor) -> bool:
    return x.ndim >= 2
12
13


vfdev's avatar
vfdev committed
14
def _get_image_size(img: Tensor) -> List[int]:
vfdev's avatar
vfdev committed
15
    """Returns (w, h) of tensor image"""
vfdev's avatar
vfdev committed
16
17
18
19
20
    if _is_tensor_a_torch_image(img):
        return [img.shape[-1], img.shape[-2]]
    raise TypeError("Unexpected type {}".format(type(img)))


21
22
23
24
25
26
27
28
29
def _get_image_num_channels(img: Tensor) -> int:
    if img.ndim == 2:
        return 1
    elif img.ndim > 2:
        return img.shape[-3]

    raise TypeError("Unexpected type {}".format(type(img)))


vfdev's avatar
vfdev committed
30
def vflip(img: Tensor) -> Tensor:
31
32
33
34
35
36
    """PRIVATE METHOD. Vertically flip the given the Image Tensor.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
37
38

    Args:
39
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
40
41
42
43

    Returns:
        Tensor:  Vertically flipped image Tensor.
    """
44
    if not _is_tensor_a_torch_image(img):
45
46
        raise TypeError('tensor is not a torch image.')

47
    return img.flip(-2)
48
49


vfdev's avatar
vfdev committed
50
def hflip(img: Tensor) -> Tensor:
51
52
53
54
55
56
    """PRIVATE METHOD. Horizontally flip the given the Image Tensor.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
57
58

    Args:
59
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
60
61
62
63

    Returns:
        Tensor:  Horizontally flipped image Tensor.
    """
64
    if not _is_tensor_a_torch_image(img):
65
66
        raise TypeError('tensor is not a torch image.')

67
    return img.flip(-1)
ekka's avatar
ekka committed
68
69


vfdev's avatar
vfdev committed
70
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
71
72
73
74
75
76
    """PRIVATE METHOD. Crop the given Image Tensor.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
77

ekka's avatar
ekka committed
78
    Args:
vfdev's avatar
vfdev committed
79
        img (Tensor): Image to be cropped in the form [..., H, W]. (0,0) denotes the top left corner of the image.
ekka's avatar
ekka committed
80
81
82
83
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
84

ekka's avatar
ekka committed
85
86
87
    Returns:
        Tensor: Cropped image.
    """
88
    if not _is_tensor_a_torch_image(img):
vfdev's avatar
vfdev committed
89
        raise TypeError("tensor is not a torch image.")
ekka's avatar
ekka committed
90
91

    return img[..., top:top + height, left:left + width]
92
93


94
def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
95
96
97
98
99
100
101
    """PRIVATE METHOD. Convert the given RGB Image Tensor to Grayscale.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

102
103
104
105
106
    For RGB to Grayscale conversion, ITU-R 601-2 luma transform is performed which
    is L = R * 0.2989 + G * 0.5870 + B * 0.1140

    Args:
        img (Tensor): Image to be converted to Grayscale in the form [C, H, W].
107
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.
108
109

    Returns:
110
111
112
113
        Tensor: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
114
115

    """
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    if img.ndim < 3:
        raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))
    c = img.shape[-3]
    if c != 3:
        raise TypeError("Input image tensor should 3 channels, but found {}".format(c))

    if num_output_channels not in (1, 3):
        raise ValueError('num_output_channels should be either 1 or 3')

    r, g, b = img.unbind(dim=-3)
    # This implementation closely follows the TF one:
    # https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/ops/image_ops_impl.py#L2105-L2138
    l_img = (0.2989 * r + 0.587 * g + 0.114 * b).to(img.dtype)
    l_img = l_img.unsqueeze(dim=-3)

    if num_output_channels == 3:
        return l_img.expand(img.shape)
133

134
    return l_img
135
136


vfdev's avatar
vfdev committed
137
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
138
139
140
141
142
143
    """PRIVATE METHOD. Adjust brightness of an RGB image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
144
145
146
147
148
149
150
151
152
153

    Args:
        img (Tensor): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        Tensor: Brightness adjusted image.
    """
154
155
156
    if brightness_factor < 0:
        raise ValueError('brightness_factor ({}) is not non-negative.'.format(brightness_factor))

157
    if not _is_tensor_a_torch_image(img):
158
159
        raise TypeError('tensor is not a torch image.')

160
    return _blend(img, torch.zeros_like(img), brightness_factor)
161
162


vfdev's avatar
vfdev committed
163
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
164
165
166
167
168
169
    """PRIVATE METHOD. Adjust contrast of an RGB image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
170
171
172
173
174
175
176
177
178
179

    Args:
        img (Tensor): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        Tensor: Contrast adjusted image.
    """
180
181
182
    if contrast_factor < 0:
        raise ValueError('contrast_factor ({}) is not non-negative.'.format(contrast_factor))

183
    if not _is_tensor_a_torch_image(img):
184
185
        raise TypeError('tensor is not a torch image.')

186
    mean = torch.mean(rgb_to_grayscale(img).to(torch.float))
187
188
189
190

    return _blend(img, mean, contrast_factor)


191
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
192
193
194
195
196
197
    """PRIVATE METHOD. Adjust hue of an image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue

    Args:
        img (Tensor): Image to be adjusted. Image type is either uint8 or float.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
         Tensor: Hue adjusted image.
    """
221
    if not (-0.5 <= hue_factor <= 0.5):
222
223
        raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor))

224
225
    if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)):
        raise TypeError('img should be Tensor image. Got {}'.format(type(img)))
226
227
228
229
230
231
232

    orig_dtype = img.dtype
    if img.dtype == torch.uint8:
        img = img.to(dtype=torch.float32) / 255.0

    img = _rgb2hsv(img)
    h, s, v = img.unbind(0)
233
    h = (h + hue_factor) % 1.0
234
235
236
237
238
239
240
241
242
    img = torch.stack((h, s, v))
    img_hue_adj = _hsv2rgb(img)

    if orig_dtype == torch.uint8:
        img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype)

    return img_hue_adj


vfdev's avatar
vfdev committed
243
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
244
245
246
247
248
249
    """PRIVATE METHOD. Adjust color saturation of an RGB image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
250
251
252

    Args:
        img (Tensor): Image to be adjusted.
253
254
255
        saturation_factor (float):  How much to adjust the saturation. Can be any
            non negative number. 0 gives a black and white image, 1 gives the
            original image while 2 enhances the saturation by a factor of 2.
256
257
258
259

    Returns:
        Tensor: Saturation adjusted image.
    """
260
261
262
    if saturation_factor < 0:
        raise ValueError('saturation_factor ({}) is not non-negative.'.format(saturation_factor))

263
    if not _is_tensor_a_torch_image(img):
264
265
        raise TypeError('tensor is not a torch image.')

266
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
267
268


269
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
270
271
272
273
274
275
    r"""PRIVATE METHOD. Adjust gamma of an RGB image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

    .. math::
        `I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}`

    See `Gamma Correction`_ for more details.

    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction

    Args:
        img (Tensor): Tensor of RBG values to be adjusted.
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
        gain (float): The constant multiplier.
    """

    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be a Tensor. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    result = img
    dtype = img.dtype
    if not torch.is_floating_point(img):
        result = result / 255.0

    result = (gain * result ** gamma).clamp(0, 1)

    if result.dtype != dtype:
        eps = 1e-3
        result = (255 + 1.0 - eps) * result
    result = result.to(dtype)
    return result


vfdev's avatar
vfdev committed
315
def center_crop(img: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
316
317
    """DEPRECATED. Crop the Image Tensor and resize it to desired size.

318
319
320
321
322
    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

323
324
325
326
    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.center_crop`` instead.
327
328

    Args:
vfdev's avatar
vfdev committed
329
        img (Tensor): Image to be cropped.
330
331
332
333
334
335
        output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions

    Returns:
            Tensor: Cropped image.
    """
336
337
338
339
340
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.center_crop`` instead."
    )

341
    if not _is_tensor_a_torch_image(img):
342
343
344
345
        raise TypeError('tensor is not a torch image.')

    _, image_width, image_height = img.size()
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
346
347
348
349
350
351
352
353
    # crop_top = int(round((image_height - crop_height) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_top = int((image_height - crop_height + 1) * 0.5)
    # crop_left = int(round((image_width - crop_width) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_left = int((image_width - crop_width + 1) * 0.5)
354
355
356
357

    return crop(img, crop_top, crop_left, crop_height, crop_width)


vfdev's avatar
vfdev committed
358
def five_crop(img: Tensor, size: BroadcastingList2[int]) -> List[Tensor]:
359
360
    """DEPRECATED. Crop the given Image Tensor into four corners and the central crop.

361
362
363
364
365
    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

366
367
368
369
370
    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.five_crop`` instead.

371
    .. Note::
372

373
        This transform returns a List of Tensors and there may be a
374
375
376
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
377
378
379
380
        img (Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
381
382

    Returns:
383
       List: List (tl, tr, bl, br, center)
384
385
                Corresponding top left, top right, bottom left, bottom right and center crop.
    """
386
387
388
389
390
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.five_crop`` instead."
    )

391
    if not _is_tensor_a_torch_image(img):
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    _, image_width, image_height = img.size()
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = crop(img, 0, 0, crop_width, crop_height)
    tr = crop(img, image_width - crop_width, 0, image_width, crop_height)
    bl = crop(img, 0, image_height - crop_height, crop_width, image_height)
    br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height)
    center = center_crop(img, (crop_height, crop_width))

408
    return [tl, tr, bl, br, center]
409
410


vfdev's avatar
vfdev committed
411
def ten_crop(img: Tensor, size: BroadcastingList2[int], vertical_flip: bool = False) -> List[Tensor]:
412
    """DEPRECATED. Crop the given Image Tensor into four corners and the central crop plus the
413
        flipped version of these (horizontal flipping is used by default).
vfdev's avatar
vfdev committed
414

415
416
417
418
419
    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.

420
421
422
423
424
    .. warning::

        This method is deprecated and will be removed in future releases.
        Please, use ``F.ten_crop`` instead.

425
    .. Note::
426

427
        This transform returns a List of images and there may be a
428
429
430
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
431
432
        img (Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
433
434
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
vfdev's avatar
vfdev committed
435
        vertical_flip (bool): Use vertical flipping instead of horizontal
436
437

    Returns:
438
       List: List (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
439
440
441
                Corresponding top left, top right, bottom left, bottom right and center crop
                and same for the flipped image's tensor.
    """
442
443
444
445
446
    warnings.warn(
        "This method is deprecated and will be removed in future releases. "
        "Please, use ``F.ten_crop`` instead."
    )

447
    if not _is_tensor_a_torch_image(img):
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)

    return first_five + second_five


vfdev's avatar
vfdev committed
463
def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor:
464
465
    bound = 1.0 if img1.is_floating_point() else 255.0
    return (ratio * img1 + (1.0 - ratio) * img2).clamp(0, bound).to(img1.dtype)
466
467
468
469
470


def _rgb2hsv(img):
    r, g, b = img.unbind(0)

471
472
    # Implementation is based on https://github.com/python-pillow/Pillow/blob/4174d4267616897df3746d315d5a2d0f82c656ee/
    # src/libImaging/Convert.c#L330
473
474
475
476
477
478
479
480
481
482
483
484
    maxc = torch.max(img, dim=0).values
    minc = torch.min(img, dim=0).values

    # The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
    # from happening in the results, because
    #   + S channel has division by `maxc`, which is zero only if `maxc = minc`
    #   + H channel has division by `(maxc - minc)`.
    #
    # Instead of overwriting NaN afterwards, we just prevent it from occuring so
    # we don't need to deal with it in case we save the NaN in a buffer in
    # backprop, if it is ever supported, but it doesn't hurt to do so.
    eqc = maxc == minc
485
486

    cr = maxc - minc
487
    # Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
488
489
    ones = torch.ones_like(maxc)
    s = cr / torch.where(eqc, ones, maxc)
490
491
492
493
    # Note that `eqc => maxc = minc = r = g = b`. So the following calculation
    # of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
    # would not matter what values `rc`, `gc`, and `bc` have here, and thus
    # replacing denominator with 1 when `eqc` is fine.
494
    cr_divisor = torch.where(eqc, ones, cr)
495
496
497
    rc = (maxc - r) / cr_divisor
    gc = (maxc - g) / cr_divisor
    bc = (maxc - b) / cr_divisor
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

    hr = (maxc == r) * (bc - gc)
    hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
    hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
    h = (hr + hg + hb)
    h = torch.fmod((h / 6.0 + 1.0), 1.0)
    return torch.stack((h, s, maxc))


def _hsv2rgb(img):
    h, s, v = img.unbind(0)
    i = torch.floor(h * 6.0)
    f = (h * 6.0) - i
    i = i.to(dtype=torch.int32)

    p = torch.clamp((v * (1.0 - s)), 0.0, 1.0)
    q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0)
    t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0)
    i = i % 6

518
    mask = i == torch.arange(6, device=i.device)[:, None, None]
519
520
521
522
523
524
525

    a1 = torch.stack((v, q, p, p, t, v))
    a2 = torch.stack((t, v, v, q, p, p))
    a3 = torch.stack((p, p, t, v, v, q))
    a4 = torch.stack((a1, a2, a3))

    return torch.einsum("ijk, xijk -> xjk", mask.to(dtype=img.dtype), a4)
526
527


528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor:
    # padding is left, right, top, bottom
    in_sizes = img.size()

    x_indices = [i for i in range(in_sizes[-1])]  # [0, 1, 2, 3, ...]
    left_indices = [i for i in range(padding[0] - 1, -1, -1)]  # e.g. [3, 2, 1, 0]
    right_indices = [-(i + 1) for i in range(padding[1])]  # e.g. [-1, -2, -3]
    x_indices = torch.tensor(left_indices + x_indices + right_indices)

    y_indices = [i for i in range(in_sizes[-2])]
    top_indices = [i for i in range(padding[2] - 1, -1, -1)]
    bottom_indices = [-(i + 1) for i in range(padding[3])]
    y_indices = torch.tensor(top_indices + y_indices + bottom_indices)

    ndim = img.ndim
    if ndim == 3:
        return img[:, y_indices[:, None], x_indices[None, :]]
    elif ndim == 4:
        return img[:, :, y_indices[:, None], x_indices[None, :]]
    else:
        raise RuntimeError("Symmetric padding of N-D tensors are not supported yet")


551
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
552
553
554
555
556
557
    r"""PRIVATE METHOD. Pad the given Tensor Image on all sides with specified padding mode and fill value.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
558
559
560
561
562
563
564
565
566
567
568

    Args:
        img (Tensor): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
            is used to pad all borders. If a tuple or list of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple or list of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively. In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
        fill (int): Pixel fill value for constant fill. Default is 0.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
569
570
        padding_mode (str): Type of padding. Should be: constant, edge or reflect. Default is constant.
            Mode symmetric is not yet supported for Tensor inputs.
571
572
573

            - constant: pads with a constant value, this value is specified with fill

574
575
576
577
578
579
580
            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

581
582
583
584
585
            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    Returns:
        Tensor: Padded image.
    """
    if not _is_tensor_a_torch_image(img):
        raise TypeError("tensor is not a torch image.")

    if not isinstance(padding, (int, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (int, float)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, tuple):
        padding = list(padding)

    if isinstance(padding, list) and len(padding) not in [1, 2, 4]:
        raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

606
607
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
608
609
610

    if isinstance(padding, int):
        if torch.jit.is_scripting():
vfdev's avatar
vfdev committed
611
            # This maybe unreachable
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
            raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]")
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 1:
        pad_left = pad_right = pad_top = pad_bottom = padding[0]
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    p = [pad_left, pad_right, pad_top, pad_bottom]

627
628
629
    if padding_mode == "edge":
        # remap padding_mode str
        padding_mode = "replicate"
630
631
632
633
634
    elif padding_mode == "symmetric":
        # route to another implementation
        if p[0] < 0 or p[1] < 0 or p[2] < 0 or p[3] < 0:  # no any support for torch script
            raise ValueError("Padding can not be negative for symmetric padding_mode")
        return _pad_symmetric(img, p)
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
    if (padding_mode != "constant") and img.dtype not in (torch.float32, torch.float64):
        # Here we temporary cast input tensor to float
        # until pytorch issue is resolved :
        # https://github.com/pytorch/pytorch/issues/40763
        need_cast = True
        img = img.to(torch.float32)

650
    img = torch.nn.functional.pad(img, p, mode=padding_mode, value=float(fill))
651
652
653
654
655
656
657

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        img = img.to(out_dtype)

658
    return img
vfdev's avatar
vfdev committed
659
660
661


def resize(img: Tensor, size: List[int], interpolation: int = 2) -> Tensor:
662
663
664
665
666
667
    r"""PRIVATE METHOD. Resize the input Tensor to the given size.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
vfdev's avatar
vfdev committed
668
669
670
671
672
673
674
675
676
677

    Args:
        img (Tensor): Image to be resized.
        size (int or tuple or list): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaining
            the aspect ratio. i.e, if height > width, then image will be rescaled to
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
            In torchscript mode padding as a single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
678
679
        interpolation (int, optional): Desired interpolation. Default is bilinear (=2). Other supported values:
            nearest(=0) and bicubic(=3).
vfdev's avatar
vfdev committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

    Returns:
        Tensor: Resized image.
    """
    if not _is_tensor_a_torch_image(img):
        raise TypeError("tensor is not a torch image.")

    if not isinstance(size, (int, tuple, list)):
        raise TypeError("Got inappropriate size arg")
    if not isinstance(interpolation, int):
        raise TypeError("Got inappropriate interpolation arg")

    _interpolation_modes = {
        0: "nearest",
        2: "bilinear",
        3: "bicubic",
    }

    if interpolation not in _interpolation_modes:
        raise ValueError("This interpolation mode is unsupported with Tensor input")

    if isinstance(size, tuple):
        size = list(size)

    if isinstance(size, list) and len(size) not in [1, 2]:
        raise ValueError("Size must be an int or a 1 or 2 element tuple/list, not a "
                         "{} element tuple/list".format(len(size)))

    w, h = _get_image_size(img)

    if isinstance(size, int):
        size_w, size_h = size, size
    elif len(size) < 2:
        size_w, size_h = size[0], size[0]
    else:
715
        size_w, size_h = size[1], size[0]  # Convention (h, w)
vfdev's avatar
vfdev committed
716
717
718
719
720
721
722

    if isinstance(size, int) or len(size) < 2:
        if w < h:
            size_h = int(size_w * h / w)
        else:
            size_w = int(size_h * w / h)

723
724
        if (w <= h and w == size_w) or (h <= w and h == size_h):
            return img
vfdev's avatar
vfdev committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

    # make image NCHW
    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    mode = _interpolation_modes[interpolation]

    out_dtype = img.dtype
    need_cast = False
    if img.dtype not in (torch.float32, torch.float64):
        need_cast = True
        img = img.to(torch.float32)

    # Define align_corners to avoid warnings
    align_corners = False if mode in ["bilinear", "bicubic"] else None

    img = torch.nn.functional.interpolate(img, size=(size_h, size_w), mode=mode, align_corners=align_corners)

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        if mode == "bicubic":
            img = img.clamp(min=0, max=255)
        img = img.to(out_dtype)

    return img
vfdev's avatar
vfdev committed
754
755


vfdev's avatar
vfdev committed
756
def _assert_grid_transform_inputs(
757
758
759
760
761
762
        img: Tensor,
        matrix: Optional[List[float]],
        resample: int,
        fillcolor: Optional[int],
        _interpolation_modes: Dict[int, str],
        coeffs: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
763
764
765
):
    if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)):
        raise TypeError("img should be Tensor Image. Got {}".format(type(img)))
vfdev's avatar
vfdev committed
766

767
    if matrix is not None and not isinstance(matrix, list):
vfdev's avatar
vfdev committed
768
        raise TypeError("Argument matrix should be a list. Got {}".format(type(matrix)))
vfdev's avatar
vfdev committed
769

770
    if matrix is not None and len(matrix) != 6:
vfdev's avatar
vfdev committed
771
        raise ValueError("Argument matrix should have 6 float values")
vfdev's avatar
vfdev committed
772

773
774
775
    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

vfdev's avatar
vfdev committed
776
    if fillcolor is not None:
vfdev's avatar
vfdev committed
777
        warnings.warn("Argument fill/fillcolor is not supported for Tensor input. Fill value is zero")
vfdev's avatar
vfdev committed
778
779

    if resample not in _interpolation_modes:
780
        raise ValueError("Resampling mode '{}' is unsupported with Tensor input".format(resample))
vfdev's avatar
vfdev committed
781
782


vfdev's avatar
vfdev committed
783
def _apply_grid_transform(img: Tensor, grid: Tensor, mode: str) -> Tensor:
vfdev's avatar
vfdev committed
784
785
786
787
788
789
790
791
    # make image NCHW
    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
792
    if out_dtype != grid.dtype:
vfdev's avatar
vfdev committed
793
        need_cast = True
794
        img = img.to(grid)
vfdev's avatar
vfdev committed
795
796
797
798
799
800
801
802
803
804
805

    img = grid_sample(img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        # it is better to round before cast
        img = torch.round(img).to(out_dtype)

    return img
vfdev's avatar
vfdev committed
806
807


808
809
810
811
812
813
814
815
816
817
def _gen_affine_grid(
        theta: Tensor, w: int, h: int, ow: int, oh: int,
) -> Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate

    d = 0.5
818
    base_grid = torch.empty(1, oh, ow, 3, dtype=theta.dtype, device=theta.device)
819
820
821
822
    base_grid[..., 0].copy_(torch.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, steps=ow))
    base_grid[..., 1].copy_(torch.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, steps=oh).unsqueeze_(-1))
    base_grid[..., 2].fill_(1)

823
824
    rescaled_theta = theta.transpose(1, 2) / torch.tensor([0.5 * w, 0.5 * h], dtype=theta.dtype, device=theta.device)
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
825
826
827
    return output_grid.view(1, oh, ow, 2)


vfdev's avatar
vfdev committed
828
829
830
def affine(
        img: Tensor, matrix: List[float], resample: int = 0, fillcolor: Optional[int] = None
) -> Tensor:
831
832
833
834
835
836
    """PRIVATE METHOD. Apply affine transformation on the Tensor image keeping image center invariant.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
vfdev's avatar
vfdev committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

    Args:
        img (Tensor): image to be rotated.
        matrix (list of floats): list of 6 float values representing inverse matrix for affine transformation.
        resample (int, optional): An optional resampling filter. Default is nearest (=0). Other supported values:
            bilinear(=2).
        fillcolor (int, optional): this option is not supported for Tensor input. Fill value for the area outside the
            transform in the output image is always 0.

    Returns:
        Tensor: Transformed image.
    """
    _interpolation_modes = {
        0: "nearest",
        2: "bilinear",
    }

    _assert_grid_transform_inputs(img, matrix, resample, fillcolor, _interpolation_modes)

856
857
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
vfdev's avatar
vfdev committed
858
    shape = img.shape
859
    # grid will be generated on the same device as theta and img
860
    grid = _gen_affine_grid(theta, w=shape[-1], h=shape[-2], ow=shape[-1], oh=shape[-2])
vfdev's avatar
vfdev committed
861
862
863
864
    mode = _interpolation_modes[resample]
    return _apply_grid_transform(img, grid, mode)


865
def _compute_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
vfdev's avatar
vfdev committed
866

867
868
869
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

vfdev's avatar
vfdev committed
870
871
    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    pts = torch.tensor([
872
873
874
875
        [-0.5 * w, -0.5 * h, 1.0],
        [-0.5 * w, 0.5 * h, 1.0],
        [0.5 * w, 0.5 * h, 1.0],
        [0.5 * w, -0.5 * h, 1.0],
vfdev's avatar
vfdev committed
876
    ])
877
    theta = torch.tensor(matrix, dtype=torch.float).reshape(1, 2, 3)
878
    new_pts = pts.view(1, 4, 3).bmm(theta.transpose(1, 2)).view(4, 2)
vfdev's avatar
vfdev committed
879
880
881
    min_vals, _ = new_pts.min(dim=0)
    max_vals, _ = new_pts.max(dim=0)

882
883
884
885
886
887
    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    cmax = torch.ceil((max_vals / tol).trunc_() * tol)
    cmin = torch.floor((min_vals / tol).trunc_() * tol)
    size = cmax - cmin
    return int(size[0]), int(size[1])
vfdev's avatar
vfdev committed
888
889
890
891
892


def rotate(
        img: Tensor, matrix: List[float], resample: int = 0, expand: bool = False, fill: Optional[int] = None
) -> Tensor:
893
894
895
896
897
898
    """PRIVATE METHOD. Rotate the Tensor image by angle.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
vfdev's avatar
vfdev committed
899
900
901
902

    Args:
        img (Tensor): image to be rotated.
        matrix (list of floats): list of 6 float values representing inverse matrix for rotation transformation.
903
            Translation part (``matrix[2]`` and ``matrix[5]``) should be in pixel coordinates.
vfdev's avatar
vfdev committed
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
        resample (int, optional): An optional resampling filter. Default is nearest (=0). Other supported values:
            bilinear(=2).
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        fill (n-tuple or int or float): this option is not supported for Tensor input.
            Fill value for the area outside the transform in the output image is always 0.

    Returns:
        Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
    _interpolation_modes = {
        0: "nearest",
        2: "bilinear",
    }

    _assert_grid_transform_inputs(img, matrix, resample, fill, _interpolation_modes)
925
    w, h = img.shape[-1], img.shape[-2]
926
    ow, oh = _compute_output_size(matrix, w, h) if expand else (w, h)
927
928
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    theta = torch.tensor(matrix, dtype=dtype, device=img.device).reshape(1, 2, 3)
929
    # grid will be generated on the same device as theta and img
930
    grid = _gen_affine_grid(theta, w=w, h=h, ow=ow, oh=oh)
vfdev's avatar
vfdev committed
931
932
933
    mode = _interpolation_modes[resample]

    return _apply_grid_transform(img, grid, mode)
934
935


936
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device):
937
938
939
940
941
942
943
944
945
946
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor([[
        [coeffs[0], coeffs[1], coeffs[2]],
        [coeffs[3], coeffs[4], coeffs[5]]
947
    ]], dtype=dtype, device=device)
948
949
950
    theta2 = torch.tensor([[
        [coeffs[6], coeffs[7], 1.0],
        [coeffs[6], coeffs[7], 1.0]
951
    ]], dtype=dtype, device=device)
952
953

    d = 0.5
954
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
955
956
957
958
    base_grid[..., 0].copy_(torch.linspace(d, ow * 1.0 + d - 1.0, steps=ow))
    base_grid[..., 1].copy_(torch.linspace(d, oh * 1.0 + d - 1.0, steps=oh).unsqueeze_(-1))
    base_grid[..., 2].fill_(1)

959
    rescaled_theta1 = theta1.transpose(1, 2) / torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device)
960
    output_grid1 = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta1)
961
962
963
964
965
966
967
968
969
    output_grid2 = base_grid.view(1, oh * ow, 3).bmm(theta2.transpose(1, 2))

    output_grid = output_grid1 / output_grid2 - 1.0
    return output_grid.view(1, oh, ow, 2)


def perspective(
        img: Tensor, perspective_coeffs: List[float], interpolation: int = 2, fill: Optional[int] = None
) -> Tensor:
970
971
972
973
974
975
    """PRIVATE METHOD. Perform perspective transform of the given Tensor image.

    .. warning::

        Module ``transforms.functional_tensor`` is private and should not be used in user application.
        Please, consider instead using methods from `transforms.functional` module.
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

    Args:
        img (Tensor): Image to be transformed.
        perspective_coeffs (list of float): perspective transformation coefficients.
        interpolation (int): Interpolation type. Default, ``PIL.Image.BILINEAR``.
        fill (n-tuple or int or float): this option is not supported for Tensor input. Fill value for the area
            outside the transform in the output image is always 0.

    Returns:
        Tensor: transformed image.
    """
    if not (isinstance(img, torch.Tensor) and _is_tensor_a_torch_image(img)):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

    _interpolation_modes = {
        0: "nearest",
        2: "bilinear",
    }

    _assert_grid_transform_inputs(
        img,
        matrix=None,
        resample=interpolation,
        fillcolor=fill,
        _interpolation_modes=_interpolation_modes,
        coeffs=perspective_coeffs
    )

    ow, oh = img.shape[-1], img.shape[-2]
1005
1006
    dtype = img.dtype if torch.is_floating_point(img) else torch.float32
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=img.device)
1007
1008
1009
    mode = _interpolation_modes[interpolation]

    return _apply_grid_transform(img, grid, mode)