backbone_utils.py 9.37 KB
Newer Older
1
import warnings
2
from typing import Callable, Dict, List, Optional, Union
3

4
from torch import nn, Tensor
5
from torchvision.ops import misc as misc_nn_ops
6
from torchvision.ops.feature_pyramid_network import ExtraFPNBlock, FeaturePyramidNetwork, LastLevelMaxPool
7

8
from .. import mobilenet, resnet
9
from .._utils import IntermediateLayerGetter
10
11


eellison's avatar
eellison committed
12
class BackboneWithFPN(nn.Module):
13
14
15
16
    """
    Adds a FPN on top of a model.
    Internally, it uses torchvision.models._utils.IntermediateLayerGetter to
    extract a submodel that returns the feature maps specified in return_layers.
17
    The same limitations of IntermediateLayerGetter apply here.
18
    Args:
19
20
21
22
23
24
25
26
27
28
29
        backbone (nn.Module)
        return_layers (Dict[name, new_name]): a dict containing the names
            of the modules for which the activations will be returned as
            the key of the dict, and the value of the dict is the name
            of the returned activation (which the user can specify).
        in_channels_list (List[int]): number of channels for each feature map
            that is returned, in the order they are present in the OrderedDict
        out_channels (int): number of channels in the FPN.
    Attributes:
        out_channels (int): the number of channels in the FPN
    """
30

31
32
33
34
35
36
37
38
    def __init__(
        self,
        backbone: nn.Module,
        return_layers: Dict[str, str],
        in_channels_list: List[int],
        out_channels: int,
        extra_blocks: Optional[ExtraFPNBlock] = None,
    ) -> None:
39
        super().__init__()
40
41
42
43

        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

eellison's avatar
eellison committed
44
45
        self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
        self.fpn = FeaturePyramidNetwork(
46
47
            in_channels_list=in_channels_list,
            out_channels=out_channels,
48
            extra_blocks=extra_blocks,
49
50
51
        )
        self.out_channels = out_channels

52
    def forward(self, x: Tensor) -> Dict[str, Tensor]:
eellison's avatar
eellison committed
53
54
55
56
        x = self.body(x)
        x = self.fpn(x)
        return x

57

58
def resnet_fpn_backbone(
59
60
61
62
63
64
65
    backbone_name: str,
    pretrained: bool,
    norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers: int = 3,
    returned_layers: Optional[List[int]] = None,
    extra_blocks: Optional[ExtraFPNBlock] = None,
) -> BackboneWithFPN:
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    """
    Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone.

    Examples::

        >>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
        >>> backbone = resnet_fpn_backbone('resnet50', pretrained=True, trainable_layers=3)
        >>> # get some dummy image
        >>> x = torch.rand(1,3,64,64)
        >>> # compute the output
        >>> output = backbone(x)
        >>> print([(k, v.shape) for k, v in output.items()])
        >>> # returns
        >>>   [('0', torch.Size([1, 256, 16, 16])),
        >>>    ('1', torch.Size([1, 256, 8, 8])),
        >>>    ('2', torch.Size([1, 256, 4, 4])),
        >>>    ('3', torch.Size([1, 256, 2, 2])),
        >>>    ('pool', torch.Size([1, 256, 1, 1]))]

85
    Args:
86
        backbone_name (string): resnet architecture. Possible values are 'resnet18', 'resnet34', 'resnet50',
87
             'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
88
        pretrained (bool): If True, returns a model with backbone pre-trained on Imagenet
89
        norm_layer (callable): it is recommended to use the default value. For details visit:
90
91
92
            (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267)
        trainable_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
93
94
95
96
97
98
99
        returned_layers (list of int): The layers of the network to return. Each entry must be in ``[1, 4]``.
            By default all layers are returned.
        extra_blocks (ExtraFPNBlock or None): if provided, extra operations will
            be performed. It is expected to take the fpn features, the original
            features and the names of the original features as input, and returns
            a new list of feature maps and their corresponding names. By
            default a ``LastLevelMaxPool`` is used.
100
    """
101
    backbone = resnet.__dict__[backbone_name](pretrained=pretrained, norm_layer=norm_layer)
102
    return _resnet_fpn_extractor(backbone, trainable_layers, returned_layers, extra_blocks)
103

104

105
def _resnet_fpn_extractor(
106
107
    backbone: resnet.ResNet,
    trainable_layers: int,
108
109
    returned_layers: Optional[List[int]] = None,
    extra_blocks: Optional[ExtraFPNBlock] = None,
110
111
) -> BackboneWithFPN:

112
    # select layers that wont be frozen
113
114
    if trainable_layers < 0 or trainable_layers > 5:
        raise ValueError(f"Trainable layers should be in the range [0,5], got {trainable_layers}")
115
    layers_to_train = ["layer4", "layer3", "layer2", "layer1", "conv1"][:trainable_layers]
116
    if trainable_layers == 5:
117
        layers_to_train.append("bn1")
118
    for name, parameter in backbone.named_parameters():
119
        if all([not name.startswith(layer) for layer in layers_to_train]):
120
121
            parameter.requires_grad_(False)

122
123
124
125
126
    if extra_blocks is None:
        extra_blocks = LastLevelMaxPool()

    if returned_layers is None:
        returned_layers = [1, 2, 3, 4]
127
128
    if min(returned_layers) <= 0 or max(returned_layers) >= 5:
        raise ValueError(f"Each returned layer should be in the range [1,4]. Got {returned_layers}")
129
    return_layers = {f"layer{k}": str(v) for v, k in enumerate(returned_layers)}
130

131
    in_channels_stage2 = backbone.inplanes // 8
132
    in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers]
133
    out_channels = 256
134
    return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
135
136


137
138
139
140
141
142
143
def _validate_trainable_layers(
    pretrained: bool,
    trainable_backbone_layers: Optional[int],
    max_value: int,
    default_value: int,
) -> int:
    # don't freeze any layers if pretrained model or backbone is not used
144
145
146
147
148
    if not pretrained:
        if trainable_backbone_layers is not None:
            warnings.warn(
                "Changing trainable_backbone_layers has not effect if "
                "neither pretrained nor pretrained_backbone have been set to True, "
149
                f"falling back to trainable_backbone_layers={max_value} so that all layers are trainable"
150
            )
151
152
153
        trainable_backbone_layers = max_value

    # by default freeze first blocks
154
    if trainable_backbone_layers is None:
155
        trainable_backbone_layers = default_value
156
157
158
159
    if trainable_backbone_layers < 0 or trainable_backbone_layers > max_value:
        raise ValueError(
            f"Trainable backbone layers should be in the range [0,{max_value}], got {trainable_backbone_layers} "
        )
160
    return trainable_backbone_layers
161
162
163


def mobilenet_backbone(
164
165
166
167
168
169
170
171
    backbone_name: str,
    pretrained: bool,
    fpn: bool,
    norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers: int = 2,
    returned_layers: Optional[List[int]] = None,
    extra_blocks: Optional[ExtraFPNBlock] = None,
) -> nn.Module:
172
173
    backbone = mobilenet.__dict__[backbone_name](pretrained=pretrained, norm_layer=norm_layer)
    return _mobilenet_extractor(backbone, fpn, trainable_layers, returned_layers, extra_blocks)
174

175

176
177
178
def _mobilenet_extractor(
    backbone: Union[mobilenet.MobileNetV2, mobilenet.MobileNetV3],
    fpn: bool,
179
    trainable_layers: int,
180
181
182
183
    returned_layers: Optional[List[int]] = None,
    extra_blocks: Optional[ExtraFPNBlock] = None,
) -> nn.Module:
    backbone = backbone.features
184
    # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
185
    # The first and last blocks are always included because they are the C0 (conv1) and Cn.
186
    stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
187
188
189
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
190
191
    if trainable_layers < 0 or trainable_layers > num_stages:
        raise ValueError(f"Trainable layers should be in the range [0,{num_stages}], got {trainable_layers} ")
192
    freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
193
194
195
196
197
198
199
200
201
202
203
204

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

    out_channels = 256
    if fpn:
        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

        if returned_layers is None:
            returned_layers = [num_stages - 2, num_stages - 1]
205
206
        if min(returned_layers) < 0 or max(returned_layers) >= num_stages:
            raise ValueError(f"Each returned layer should be in the range [0,{num_stages - 1}], got {returned_layers} ")
207
        return_layers = {f"{stage_indices[k]}": str(v) for v, k in enumerate(returned_layers)}
208
209
210
211
212
213
214
215
216

        in_channels_list = [backbone[stage_indices[i]].out_channels for i in returned_layers]
        return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
    else:
        m = nn.Sequential(
            backbone,
            # depthwise linear combination of channels to reduce their size
            nn.Conv2d(backbone[-1].out_channels, out_channels, 1),
        )
217
        m.out_channels = out_channels  # type: ignore[assignment]
218
        return m