test_transforms_v2_consistency.py 35.8 KB
Newer Older
1
2
import importlib.machinery
import importlib.util
3
import inspect
4
import random
5
import re
6
from pathlib import Path
7

8
import numpy as np
9
import PIL.Image
10
import pytest
11
12

import torch
13
import torchvision.transforms.v2 as v2_transforms
14
from common_utils import assert_close, assert_equal, set_rng_seed
15
from torch import nn
16
from torchvision import transforms as legacy_transforms, tv_tensors
17
from torchvision._utils import sequence_to_str
18

19
from torchvision.transforms import functional as legacy_F
20
from torchvision.transforms.v2 import functional as prototype_F
Nicolas Hug's avatar
Nicolas Hug committed
21
from torchvision.transforms.v2._utils import _get_fill, query_size
22
from torchvision.transforms.v2.functional import to_pil_image
23
24
25
26
27
28
29
30
from transforms_v2_legacy_utils import (
    ArgsKwargs,
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
    make_segmentation_mask,
)
31

32
DEFAULT_MAKE_IMAGES_KWARGS = dict(color_spaces=["RGB"], extra_dims=[(4,)])
33
34


Nicolas Hug's avatar
Nicolas Hug committed
35
36
37
38
39
40
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


41
42
43
44
45
46
47
48
49
class NotScriptableArgsKwargs(ArgsKwargs):
    """
    This class is used to mark parameters that render the transform non-scriptable. They still work in eager mode and
    thus will be tested there, but will be skipped by the JIT tests.
    """

    pass


50
51
class ConsistencyConfig:
    def __init__(
52
53
54
        self,
        prototype_cls,
        legacy_cls,
55
56
        # If no args_kwargs is passed, only the signature will be checked
        args_kwargs=(),
57
58
59
        make_images_kwargs=None,
        supports_pil=True,
        removed_params=(),
60
        closeness_kwargs=None,
61
62
63
    ):
        self.prototype_cls = prototype_cls
        self.legacy_cls = legacy_cls
64
        self.args_kwargs = args_kwargs
65
66
        self.make_images_kwargs = make_images_kwargs or DEFAULT_MAKE_IMAGES_KWARGS
        self.supports_pil = supports_pil
67
        self.removed_params = removed_params
68
        self.closeness_kwargs = closeness_kwargs or dict(rtol=0, atol=0)
69
70


71
72
73
74
# These are here since both the prototype and legacy transform need to be constructed with the same random parameters
LINEAR_TRANSFORMATION_MEAN = torch.rand(36)
LINEAR_TRANSFORMATION_MATRIX = torch.rand([LINEAR_TRANSFORMATION_MEAN.numel()] * 2)

75
76
CONSISTENCY_CONFIGS = [
    ConsistencyConfig(
77
        v2_transforms.Normalize,
78
79
80
81
82
83
84
85
        legacy_transforms.Normalize,
        [
            ArgsKwargs(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ],
        supports_pil=False,
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.float]),
    ),
    ConsistencyConfig(
86
        v2_transforms.CenterCrop,
87
88
89
90
91
92
        legacy_transforms.CenterCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
    ),
93
    ConsistencyConfig(
94
        v2_transforms.FiveCrop,
95
96
97
98
99
100
101
102
        legacy_transforms.FiveCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
103
        v2_transforms.TenCrop,
104
105
106
107
        legacy_transforms.TenCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
108
            ArgsKwargs(18, vertical_flip=True),
109
110
111
112
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
113
        v2_transforms.Pad,
114
115
        legacy_transforms.Pad,
        [
116
            NotScriptableArgsKwargs(3),
117
118
119
            ArgsKwargs([3]),
            ArgsKwargs([2, 3]),
            ArgsKwargs([3, 2, 1, 4]),
120
121
122
123
124
            NotScriptableArgsKwargs(5, fill=1, padding_mode="constant"),
            ArgsKwargs([5], fill=1, padding_mode="constant"),
            NotScriptableArgsKwargs(5, padding_mode="edge"),
            NotScriptableArgsKwargs(5, padding_mode="reflect"),
            NotScriptableArgsKwargs(5, padding_mode="symmetric"),
125
126
        ],
    ),
127
128
    *[
        ConsistencyConfig(
129
            v2_transforms.LinearTransformation,
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            legacy_transforms.LinearTransformation,
            [
                ArgsKwargs(LINEAR_TRANSFORMATION_MATRIX.to(matrix_dtype), LINEAR_TRANSFORMATION_MEAN.to(matrix_dtype)),
            ],
            # Make sure that the product of the height, width and number of channels matches the number of elements in
            # `LINEAR_TRANSFORMATION_MEAN`. For example 2 * 6 * 3 == 4 * 3 * 3 == 36.
            make_images_kwargs=dict(
                DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(2, 6), (4, 3)], color_spaces=["RGB"], dtypes=[image_dtype]
            ),
            supports_pil=False,
        )
        for matrix_dtype, image_dtype in [
            (torch.float32, torch.float32),
            (torch.float64, torch.float64),
            (torch.float32, torch.uint8),
            (torch.float64, torch.float32),
            (torch.float32, torch.float64),
        ]
    ],
149
    ConsistencyConfig(
150
        v2_transforms.Grayscale,
151
152
153
154
155
        legacy_transforms.Grayscale,
        [
            ArgsKwargs(num_output_channels=1),
            ArgsKwargs(num_output_channels=3),
        ],
156
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
157
158
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
159
    ),
160
    ConsistencyConfig(
161
        v2_transforms.ToPILImage,
162
        legacy_transforms.ToPILImage,
163
        [NotScriptableArgsKwargs()],
164
165
        make_images_kwargs=dict(
            color_spaces=[
166
167
168
169
                "GRAY",
                "GRAY_ALPHA",
                "RGB",
                "RGBA",
170
171
172
173
174
175
            ],
            extra_dims=[()],
        ),
        supports_pil=False,
    ),
    ConsistencyConfig(
176
        v2_transforms.Lambda,
177
178
        legacy_transforms.Lambda,
        [
179
            NotScriptableArgsKwargs(lambda image: image / 2),
180
181
182
183
184
        ],
        # Technically, this also supports PIL, but it is overkill to write a function here that supports tensor and PIL
        # images given that the transform does nothing but call it anyway.
        supports_pil=False,
    ),
185
    ConsistencyConfig(
186
        v2_transforms.RandomEqualize,
187
188
189
190
191
192
193
194
        legacy_transforms.RandomEqualize,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
195
        v2_transforms.RandomInvert,
196
197
198
199
200
201
202
        legacy_transforms.RandomInvert,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
203
        v2_transforms.RandomPosterize,
204
205
206
207
208
209
210
211
212
        legacy_transforms.RandomPosterize,
        [
            ArgsKwargs(p=0, bits=5),
            ArgsKwargs(p=1, bits=1),
            ArgsKwargs(p=1, bits=3),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
213
        v2_transforms.RandomSolarize,
214
215
216
217
218
219
220
        legacy_transforms.RandomSolarize,
        [
            ArgsKwargs(p=0, threshold=0.5),
            ArgsKwargs(p=1, threshold=0.3),
            ArgsKwargs(p=1, threshold=0.99),
        ],
    ),
221
222
    *[
        ConsistencyConfig(
223
            v2_transforms.RandomAutocontrast,
224
225
226
227
228
229
230
231
232
233
            legacy_transforms.RandomAutocontrast,
            [
                ArgsKwargs(p=0),
                ArgsKwargs(p=1),
            ],
            make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[dt]),
            closeness_kwargs=ckw,
        )
        for dt, ckw in [(torch.uint8, dict(atol=1, rtol=0)), (torch.float32, dict(rtol=None, atol=None))]
    ],
234
    ConsistencyConfig(
235
        v2_transforms.RandomAdjustSharpness,
236
237
238
        legacy_transforms.RandomAdjustSharpness,
        [
            ArgsKwargs(p=0, sharpness_factor=0.5),
239
            ArgsKwargs(p=1, sharpness_factor=0.2),
240
241
            ArgsKwargs(p=1, sharpness_factor=0.99),
        ],
242
        closeness_kwargs={"atol": 1e-6, "rtol": 1e-6},
243
244
    ),
    ConsistencyConfig(
245
        v2_transforms.RandomGrayscale,
246
247
248
249
250
        legacy_transforms.RandomGrayscale,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
251
252
253
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
254
255
    ),
    ConsistencyConfig(
256
        v2_transforms.RandomResizedCrop,
257
258
259
260
261
        legacy_transforms.RandomResizedCrop,
        [
            ArgsKwargs(16),
            ArgsKwargs(17, scale=(0.3, 0.7)),
            ArgsKwargs(25, ratio=(0.5, 1.5)),
262
            ArgsKwargs((31, 28), interpolation=v2_transforms.InterpolationMode.NEAREST),
263
            ArgsKwargs((31, 28), interpolation=PIL.Image.NEAREST),
264
265
266
            ArgsKwargs((29, 32), antialias=False),
            ArgsKwargs((28, 31), antialias=True),
        ],
267
268
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        closeness_kwargs=dict(rtol=0, atol=1),
269
    ),
270
271
272
273
274
275
276
277
278
    ConsistencyConfig(
        v2_transforms.RandomResizedCrop,
        legacy_transforms.RandomResizedCrop,
        [
            ArgsKwargs((33, 26), interpolation=v2_transforms.InterpolationMode.BICUBIC, antialias=True),
            ArgsKwargs((33, 26), interpolation=PIL.Image.BICUBIC, antialias=True),
        ],
        closeness_kwargs=dict(rtol=0, atol=21),
    ),
279
    ConsistencyConfig(
280
        v2_transforms.ColorJitter,
281
282
283
284
285
286
287
288
289
290
291
        legacy_transforms.ColorJitter,
        [
            ArgsKwargs(),
            ArgsKwargs(brightness=0.1),
            ArgsKwargs(brightness=(0.2, 0.3)),
            ArgsKwargs(contrast=0.4),
            ArgsKwargs(contrast=(0.5, 0.6)),
            ArgsKwargs(saturation=0.7),
            ArgsKwargs(saturation=(0.8, 0.9)),
            ArgsKwargs(hue=0.3),
            ArgsKwargs(hue=(-0.1, 0.2)),
292
            ArgsKwargs(brightness=0.1, contrast=0.4, saturation=0.5, hue=0.3),
293
        ],
294
        closeness_kwargs={"atol": 1e-5, "rtol": 1e-5},
295
296
    ),
    ConsistencyConfig(
297
        v2_transforms.GaussianBlur,
298
299
300
301
302
303
304
        legacy_transforms.GaussianBlur,
        [
            ArgsKwargs(kernel_size=3),
            ArgsKwargs(kernel_size=(1, 5)),
            ArgsKwargs(kernel_size=3, sigma=0.7),
            ArgsKwargs(kernel_size=5, sigma=(0.3, 1.4)),
        ],
305
        closeness_kwargs={"rtol": 1e-5, "atol": 1e-5},
306
307
    ),
    ConsistencyConfig(
308
        v2_transforms.RandomPerspective,
309
310
311
312
313
        legacy_transforms.RandomPerspective,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, distortion_scale=0.3),
314
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=v2_transforms.InterpolationMode.NEAREST),
315
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=PIL.Image.NEAREST),
316
317
318
            ArgsKwargs(p=1, distortion_scale=0.1, fill=1),
            ArgsKwargs(p=1, distortion_scale=0.4, fill=(1, 2, 3)),
        ],
319
        closeness_kwargs={"atol": None, "rtol": None},
320
    ),
321
    ConsistencyConfig(
322
        v2_transforms.PILToTensor,
323
324
325
        legacy_transforms.PILToTensor,
    ),
    ConsistencyConfig(
326
        v2_transforms.ToTensor,
327
328
329
        legacy_transforms.ToTensor,
    ),
    ConsistencyConfig(
330
        v2_transforms.Compose,
331
332
333
        legacy_transforms.Compose,
    ),
    ConsistencyConfig(
334
        v2_transforms.RandomApply,
335
336
337
        legacy_transforms.RandomApply,
    ),
    ConsistencyConfig(
338
        v2_transforms.RandomChoice,
339
340
341
        legacy_transforms.RandomChoice,
    ),
    ConsistencyConfig(
342
        v2_transforms.RandomOrder,
343
344
345
        legacy_transforms.RandomOrder,
    ),
    ConsistencyConfig(
346
        v2_transforms.AugMix,
347
348
349
        legacy_transforms.AugMix,
    ),
    ConsistencyConfig(
350
        v2_transforms.AutoAugment,
351
352
353
        legacy_transforms.AutoAugment,
    ),
    ConsistencyConfig(
354
        v2_transforms.RandAugment,
355
356
357
        legacy_transforms.RandAugment,
    ),
    ConsistencyConfig(
358
        v2_transforms.TrivialAugmentWide,
359
360
        legacy_transforms.TrivialAugmentWide,
    ),
361
362
363
]


364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
@pytest.mark.parametrize("config", CONSISTENCY_CONFIGS, ids=lambda config: config.legacy_cls.__name__)
def test_signature_consistency(config):
    legacy_params = dict(inspect.signature(config.legacy_cls).parameters)
    prototype_params = dict(inspect.signature(config.prototype_cls).parameters)

    for param in config.removed_params:
        legacy_params.pop(param, None)

    missing = legacy_params.keys() - prototype_params.keys()
    if missing:
        raise AssertionError(
            f"The prototype transform does not support the parameters "
            f"{sequence_to_str(sorted(missing), separate_last='and ')}, but the legacy transform does. "
            f"If that is intentional, e.g. pending deprecation, please add the parameters to the `removed_params` on "
            f"the `ConsistencyConfig`."
        )

    extra = prototype_params.keys() - legacy_params.keys()
382
383
384
385
386
387
    extra_without_default = {
        param
        for param in extra
        if prototype_params[param].default is inspect.Parameter.empty
        and prototype_params[param].kind not in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}
    }
388
389
    if extra_without_default:
        raise AssertionError(
390
391
392
            f"The prototype transform requires the parameters "
            f"{sequence_to_str(sorted(extra_without_default), separate_last='and ')}, but the legacy transform does "
            f"not. Please add a default value."
393
394
        )

395
396
397
398
399
400
    legacy_signature = list(legacy_params.keys())
    # Since we made sure that we don't have any extra parameters without default above, we clamp the prototype signature
    # to the same number of parameters as the legacy one
    prototype_signature = list(prototype_params.keys())[: len(legacy_signature)]

    assert prototype_signature == legacy_signature
401
402


403
404
405
def check_call_consistency(
    prototype_transform, legacy_transform, images=None, supports_pil=True, closeness_kwargs=None
):
406
407
    if images is None:
        images = make_images(**DEFAULT_MAKE_IMAGES_KWARGS)
408

409
410
    closeness_kwargs = closeness_kwargs or dict()

411
412
    for image in images:
        image_repr = f"[{tuple(image.shape)}, {str(image.dtype).rsplit('.')[-1]}]"
413
414
415

        image_tensor = torch.Tensor(image)
        try:
416
            torch.manual_seed(0)
417
            output_legacy_tensor = legacy_transform(image_tensor)
418
419
        except Exception as exc:
            raise pytest.UsageError(
420
                f"Transforming a tensor image {image_repr} failed in the legacy transform with the "
421
                f"error above. This means that you need to specify the parameters passed to `make_images` through the "
422
423
424
425
                "`make_images_kwargs` of the `ConsistencyConfig`."
            ) from exc

        try:
426
            torch.manual_seed(0)
427
            output_prototype_tensor = prototype_transform(image_tensor)
428
429
        except Exception as exc:
            raise AssertionError(
430
                f"Transforming a tensor image with shape {image_repr} failed in the prototype transform with "
431
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
432
                f"`is_pure_tensor` path in `_transform`."
433
434
            ) from exc

435
        assert_close(
436
437
438
            output_prototype_tensor,
            output_legacy_tensor,
            msg=lambda msg: f"Tensor image consistency check failed with: \n\n{msg}",
439
            **closeness_kwargs,
440
441
442
        )

        try:
443
            torch.manual_seed(0)
444
            output_prototype_image = prototype_transform(image)
445
446
        except Exception as exc:
            raise AssertionError(
447
                f"Transforming a image tv_tensor with shape {image_repr} failed in the prototype transform with "
448
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
449
                f"`tv_tensors.Image` path in `_transform`."
450
451
            ) from exc

452
        assert_close(
453
            output_prototype_image,
454
            output_prototype_tensor,
455
            msg=lambda msg: f"Output for tv_tensor and tensor images is not equal: \n\n{msg}",
456
            **closeness_kwargs,
457
458
        )

459
        if image.ndim == 3 and supports_pil:
460
            image_pil = to_pil_image(image)
461

462
            try:
463
                torch.manual_seed(0)
464
                output_legacy_pil = legacy_transform(image_pil)
465
466
            except Exception as exc:
                raise pytest.UsageError(
467
                    f"Transforming a PIL image with shape {image_repr} failed in the legacy transform with the "
468
469
470
471
472
                    f"error above. If this transform does not support PIL images, set `supports_pil=False` on the "
                    "`ConsistencyConfig`. "
                ) from exc

            try:
473
                torch.manual_seed(0)
474
                output_prototype_pil = prototype_transform(image_pil)
475
476
            except Exception as exc:
                raise AssertionError(
477
                    f"Transforming a PIL image with shape {image_repr} failed in the prototype transform with "
478
479
480
481
                    f"the error above. This means there is a consistency bug either in `_get_params` or in the "
                    f"`PIL.Image.Image` path in `_transform`."
                ) from exc

482
            assert_close(
483
484
                output_prototype_pil,
                output_legacy_pil,
485
                msg=lambda msg: f"PIL image consistency check failed with: \n\n{msg}",
486
                **closeness_kwargs,
487
            )
488
489


490
@pytest.mark.parametrize(
491
492
    ("config", "args_kwargs"),
    [
493
494
495
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
496
        for config in CONSISTENCY_CONFIGS
497
        for idx, args_kwargs in enumerate(config.args_kwargs)
498
    ],
499
)
500
@pytest.mark.filterwarnings("ignore")
501
def test_call_consistency(config, args_kwargs):
502
503
504
    args, kwargs = args_kwargs

    try:
505
        legacy_transform = config.legacy_cls(*args, **kwargs)
506
507
508
509
510
511
512
    except Exception as exc:
        raise pytest.UsageError(
            f"Initializing the legacy transform failed with the error above. "
            f"Please correct the `ArgsKwargs({args_kwargs})` in the `ConsistencyConfig`."
        ) from exc

    try:
513
        prototype_transform = config.prototype_cls(*args, **kwargs)
514
515
516
517
518
519
    except Exception as exc:
        raise AssertionError(
            "Initializing the prototype transform failed with the error above. "
            "This means there is a consistency bug in the constructor."
        ) from exc

520
521
522
523
524
    check_call_consistency(
        prototype_transform,
        legacy_transform,
        images=make_images(**config.make_images_kwargs),
        supports_pil=config.supports_pil,
525
        closeness_kwargs=config.closeness_kwargs,
526
527
528
    )


529
530
531
532
533
534
535
536
537
get_params_parametrization = pytest.mark.parametrize(
    ("config", "get_params_args_kwargs"),
    [
        pytest.param(
            next(config for config in CONSISTENCY_CONFIGS if config.prototype_cls is transform_cls),
            get_params_args_kwargs,
            id=transform_cls.__name__,
        )
        for transform_cls, get_params_args_kwargs in [
538
539
540
541
542
            (v2_transforms.RandomResizedCrop, ArgsKwargs(make_image(), scale=[0.3, 0.7], ratio=[0.5, 1.5])),
            (v2_transforms.ColorJitter, ArgsKwargs(brightness=None, contrast=None, saturation=None, hue=None)),
            (v2_transforms.GaussianBlur, ArgsKwargs(0.3, 1.4)),
            (v2_transforms.RandomPerspective, ArgsKwargs(23, 17, 0.5)),
            (v2_transforms.AutoAugment, ArgsKwargs(5)),
543
544
        ]
    ],
545
)
546
547


548
@get_params_parametrization
549
def test_get_params_alias(config, get_params_args_kwargs):
550
551
    assert config.prototype_cls.get_params is config.legacy_cls.get_params

552
553
554
555
556
    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    legacy_transform = config.legacy_cls(*args, **kwargs)
    prototype_transform = config.prototype_cls(*args, **kwargs)
557

558
559
560
    assert prototype_transform.get_params is legacy_transform.get_params


561
@get_params_parametrization
562
563
564
565
566
567
568
569
570
def test_get_params_jit(config, get_params_args_kwargs):
    get_params_args, get_params_kwargs = get_params_args_kwargs

    torch.jit.script(config.prototype_cls.get_params)(*get_params_args, **get_params_kwargs)

    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    transform = config.prototype_cls(*args, **kwargs)
571

572
    torch.jit.script(transform.get_params)(*get_params_args, **get_params_kwargs)
573
574


575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
@pytest.mark.parametrize(
    ("config", "args_kwargs"),
    [
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
        for config in CONSISTENCY_CONFIGS
        for idx, args_kwargs in enumerate(config.args_kwargs)
        if not isinstance(args_kwargs, NotScriptableArgsKwargs)
    ],
)
def test_jit_consistency(config, args_kwargs):
    args, kwargs = args_kwargs

    prototype_transform_eager = config.prototype_cls(*args, **kwargs)
    legacy_transform_eager = config.legacy_cls(*args, **kwargs)

    legacy_transform_scripted = torch.jit.script(legacy_transform_eager)
    prototype_transform_scripted = torch.jit.script(prototype_transform_eager)

    for image in make_images(**config.make_images_kwargs):
        image = image.as_subclass(torch.Tensor)

        torch.manual_seed(0)
        output_legacy_scripted = legacy_transform_scripted(image)

        torch.manual_seed(0)
        output_prototype_scripted = prototype_transform_scripted(image)

        assert_close(output_prototype_scripted, output_legacy_scripted, **config.closeness_kwargs)


607
608
609
610
611
612
613
614
615
616
class TestContainerTransforms:
    """
    Since we are testing containers here, we also need some transforms to wrap. Thus, testing a container transform for
    consistency automatically tests the wrapped transforms consistency.

    Instead of complicated mocking or creating custom transforms just for these tests, here we use deterministic ones
    that were already tested for consistency above.
    """

    def test_compose(self):
617
        prototype_transform = v2_transforms.Compose(
618
            [
619
620
                v2_transforms.Resize(256),
                v2_transforms.CenterCrop(224),
621
622
623
624
625
626
627
628
629
            ]
        )
        legacy_transform = legacy_transforms.Compose(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ]
        )

630
631
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
632
633

    @pytest.mark.parametrize("p", [0, 0.1, 0.5, 0.9, 1])
634
635
    @pytest.mark.parametrize("sequence_type", [list, nn.ModuleList])
    def test_random_apply(self, p, sequence_type):
636
        prototype_transform = v2_transforms.RandomApply(
637
638
            sequence_type(
                [
639
640
                    v2_transforms.Resize(256),
                    v2_transforms.CenterCrop(224),
641
642
                ]
            ),
643
644
645
            p=p,
        )
        legacy_transform = legacy_transforms.RandomApply(
646
647
648
649
650
651
            sequence_type(
                [
                    legacy_transforms.Resize(256),
                    legacy_transforms.CenterCrop(224),
                ]
            ),
652
653
654
            p=p,
        )

655
656
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
657

658
659
660
661
662
        if sequence_type is nn.ModuleList:
            # quick and dirty test that it is jit-scriptable
            scripted = torch.jit.script(prototype_transform)
            scripted(torch.rand(1, 3, 300, 300))

663
    # We can't test other values for `p` since the random parameter generation is different
664
665
    @pytest.mark.parametrize("probabilities", [(0, 1), (1, 0)])
    def test_random_choice(self, probabilities):
666
        prototype_transform = v2_transforms.RandomChoice(
667
            [
668
                v2_transforms.Resize(256),
669
670
                legacy_transforms.CenterCrop(224),
            ],
671
            p=probabilities,
672
673
674
675
676
677
        )
        legacy_transform = legacy_transforms.RandomChoice(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ],
678
            p=probabilities,
679
680
        )

681
682
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
683
684


685
686
class TestToTensorTransforms:
    def test_pil_to_tensor(self):
687
        prototype_transform = v2_transforms.PILToTensor()
688
689
        legacy_transform = legacy_transforms.PILToTensor()

690
        for image in make_images(extra_dims=[()]):
691
            image_pil = to_pil_image(image)
692
693
694
695

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))

    def test_to_tensor(self):
696
        with pytest.warns(UserWarning, match=re.escape("The transform `ToTensor()` is deprecated")):
697
            prototype_transform = v2_transforms.ToTensor()
698
699
        legacy_transform = legacy_transforms.ToTensor()

700
        for image in make_images(extra_dims=[()]):
701
            image_pil = to_pil_image(image)
702
703
704
705
            image_numpy = np.array(image_pil)

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))
            assert_equal(prototype_transform(image_numpy), legacy_transform(image_numpy))
706
707


708
def import_transforms_from_references(reference):
709
710
711
712
713
714
715
716
717
718
    HERE = Path(__file__).parent
    PROJECT_ROOT = HERE.parent

    loader = importlib.machinery.SourceFileLoader(
        "transforms", str(PROJECT_ROOT / "references" / reference / "transforms.py")
    )
    spec = importlib.util.spec_from_loader("transforms", loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
    return module
719
720
721


det_transforms = import_transforms_from_references("detection")
722
723
724


class TestRefDetTransforms:
725
    def make_tv_tensors(self, with_mask=True):
726
727
728
        size = (600, 800)
        num_objects = 22

729
730
731
        def make_label(extra_dims, categories):
            return torch.randint(categories, extra_dims, dtype=torch.int64)

732
        pil_image = to_pil_image(make_image(size=size, color_space="RGB"))
733
        target = {
734
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
735
736
737
738
739
740
741
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (pil_image, target)

742
        tensor_image = torch.Tensor(make_image(size=size, color_space="RGB", dtype=torch.float32))
743
        target = {
744
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
745
746
747
748
749
750
751
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (tensor_image, target)

752
        tv_tensor_image = make_image(size=size, color_space="RGB", dtype=torch.float32)
753
        target = {
754
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
755
756
757
758
759
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

760
        yield (tv_tensor_image, target)
761
762
763
764

    @pytest.mark.parametrize(
        "t_ref, t, data_kwargs",
        [
765
            (det_transforms.RandomHorizontalFlip(p=1.0), v2_transforms.RandomHorizontalFlip(p=1.0), {}),
766
767
768
769
770
            (
                det_transforms.RandomIoUCrop(),
                v2_transforms.Compose(
                    [
                        v2_transforms.RandomIoUCrop(),
771
                        v2_transforms.SanitizeBoundingBoxes(labels_getter=lambda sample: sample[1]["labels"]),
772
773
774
775
                    ]
                ),
                {"with_mask": False},
            ),
776
            (det_transforms.RandomZoomOut(), v2_transforms.RandomZoomOut(), {"with_mask": False}),
777
            (det_transforms.ScaleJitter((1024, 1024)), v2_transforms.ScaleJitter((1024, 1024), antialias=True), {}),
778
779
780
781
            (
                det_transforms.RandomShortestSize(
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
782
                v2_transforms.RandomShortestSize(
783
784
785
786
787
788
789
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
                {},
            ),
        ],
    )
    def test_transform(self, t_ref, t, data_kwargs):
790
        for dp in self.make_tv_tensors(**data_kwargs):
791
792
793
794
795
796
797
798
799

            # We should use prototype transform first as reference transform performs inplace target update
            torch.manual_seed(12)
            output = t(dp)

            torch.manual_seed(12)
            expected_output = t_ref(*dp)

            assert_equal(expected_output, output)
800
801
802
803
804
805
806
807
808


seg_transforms = import_transforms_from_references("segmentation")


# We need this transform for two reasons:
# 1. transforms.RandomCrop uses a different scheme to pad images and masks of insufficient size than its name
#    counterpart in the detection references. Thus, we cannot use it with `pad_if_needed=True`
# 2. transforms.Pad only supports a fixed padding, but the segmentation datasets don't have a fixed image size.
809
class PadIfSmaller(v2_transforms.Transform):
810
811
812
    def __init__(self, size, fill=0):
        super().__init__()
        self.size = size
813
        self.fill = v2_transforms._geometry._setup_fill_arg(fill)
814
815

    def _get_params(self, sample):
Philip Meier's avatar
Philip Meier committed
816
        height, width = query_size(sample)
817
818
819
820
821
822
823
824
        padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)]
        needs_padding = any(padding)
        return dict(padding=padding, needs_padding=needs_padding)

    def _transform(self, inpt, params):
        if not params["needs_padding"]:
            return inpt

825
        fill = _get_fill(self.fill, type(inpt))
826
        return prototype_F.pad(inpt, padding=params["padding"], fill=fill)
827
828
829


class TestRefSegTransforms:
830
    def make_tv_tensors(self, supports_pil=True, image_dtype=torch.uint8):
831
        size = (256, 460)
832
833
834
835
        num_categories = 21

        conv_fns = []
        if supports_pil:
836
            conv_fns.append(to_pil_image)
837
838
839
        conv_fns.extend([torch.Tensor, lambda x: x])

        for conv_fn in conv_fns:
840
841
            tv_tensor_image = make_image(size=size, color_space="RGB", dtype=image_dtype)
            tv_tensor_mask = make_segmentation_mask(size=size, num_categories=num_categories, dtype=torch.uint8)
842

843
            dp = (conv_fn(tv_tensor_image), tv_tensor_mask)
844
            dp_ref = (
845
846
                to_pil_image(tv_tensor_image) if supports_pil else tv_tensor_image.as_subclass(torch.Tensor),
                to_pil_image(tv_tensor_mask),
847
848
849
850
851
852
853
854
855
            )

            yield dp, dp_ref

    def set_seed(self, seed=12):
        torch.manual_seed(seed)
        random.seed(seed)

    def check(self, t, t_ref, data_kwargs=None):
856
        for dp, dp_ref in self.make_tv_tensors(**data_kwargs or dict()):
857
858

            self.set_seed()
859
            actual = actual_image, actual_mask = t(dp)
860
861

            self.set_seed()
862
863
864
865
866
            expected_image, expected_mask = t_ref(*dp_ref)
            if isinstance(actual_image, torch.Tensor) and not isinstance(expected_image, torch.Tensor):
                expected_image = legacy_F.pil_to_tensor(expected_image)
            expected_mask = legacy_F.pil_to_tensor(expected_mask).squeeze(0)
            expected = (expected_image, expected_mask)
867

868
            assert_equal(actual, expected)
869
870
871
872
873
874

    @pytest.mark.parametrize(
        ("t_ref", "t", "data_kwargs"),
        [
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=1.0),
875
                v2_transforms.RandomHorizontalFlip(p=1.0),
876
877
878
879
                dict(),
            ),
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=0.0),
880
                v2_transforms.RandomHorizontalFlip(p=0.0),
881
882
883
884
                dict(),
            ),
            (
                seg_transforms.RandomCrop(size=480),
885
                v2_transforms.Compose(
886
                    [
887
                        PadIfSmaller(size=480, fill={tv_tensors.Mask: 255, "others": 0}),
888
                        v2_transforms.RandomCrop(size=480),
889
890
891
892
893
894
                    ]
                ),
                dict(),
            ),
            (
                seg_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
895
                v2_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
896
897
898
899
900
901
902
                dict(supports_pil=False, image_dtype=torch.float),
            ),
        ],
    )
    def test_common(self, t_ref, t, data_kwargs):
        self.check(t, t_ref, data_kwargs)

903
904
905
906
907
908
909
910
911
912
913
914

@pytest.mark.parametrize(
    ("legacy_dispatcher", "name_only_params"),
    [
        (legacy_F.get_dimensions, {}),
        (legacy_F.get_image_size, {}),
        (legacy_F.get_image_num_channels, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.pil_to_tensor, {}),
        (legacy_F.convert_image_dtype, {}),
        (legacy_F.to_pil_image, {}),
        (legacy_F.normalize, {}),
915
        (legacy_F.resize, {"interpolation"}),
916
917
918
        (legacy_F.pad, {"padding", "fill"}),
        (legacy_F.crop, {}),
        (legacy_F.center_crop, {}),
919
        (legacy_F.resized_crop, {"interpolation"}),
920
        (legacy_F.hflip, {}),
921
        (legacy_F.perspective, {"startpoints", "endpoints", "fill", "interpolation"}),
922
923
924
925
926
927
928
929
        (legacy_F.vflip, {}),
        (legacy_F.five_crop, {}),
        (legacy_F.ten_crop, {}),
        (legacy_F.adjust_brightness, {}),
        (legacy_F.adjust_contrast, {}),
        (legacy_F.adjust_saturation, {}),
        (legacy_F.adjust_hue, {}),
        (legacy_F.adjust_gamma, {}),
930
931
        (legacy_F.rotate, {"center", "fill", "interpolation"}),
        (legacy_F.affine, {"angle", "translate", "center", "fill", "interpolation"}),
932
933
934
935
936
937
938
939
940
941
942
        (legacy_F.to_grayscale, {}),
        (legacy_F.rgb_to_grayscale, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.erase, {}),
        (legacy_F.gaussian_blur, {}),
        (legacy_F.invert, {}),
        (legacy_F.posterize, {}),
        (legacy_F.solarize, {}),
        (legacy_F.adjust_sharpness, {}),
        (legacy_F.autocontrast, {}),
        (legacy_F.equalize, {}),
943
        (legacy_F.elastic_transform, {"fill", "interpolation"}),
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
    ],
)
def test_dispatcher_signature_consistency(legacy_dispatcher, name_only_params):
    legacy_signature = inspect.signature(legacy_dispatcher)
    legacy_params = list(legacy_signature.parameters.values())[1:]

    try:
        prototype_dispatcher = getattr(prototype_F, legacy_dispatcher.__name__)
    except AttributeError:
        raise AssertionError(
            f"Legacy dispatcher `F.{legacy_dispatcher.__name__}` has no prototype equivalent"
        ) from None

    prototype_signature = inspect.signature(prototype_dispatcher)
    prototype_params = list(prototype_signature.parameters.values())[1:]

    # Some dispatchers got extra parameters. This makes sure they have a default argument and thus are BC. We don't
    # need to check if parameters were added in the middle rather than at the end, since that will be caught by the
    # regular check below.
    prototype_params, new_prototype_params = (
        prototype_params[: len(legacy_params)],
        prototype_params[len(legacy_params) :],
    )
    for param in new_prototype_params:
        assert param.default is not param.empty

    # Some annotations were changed mostly to supersets of what was there before. Plus, some legacy dispatchers had no
    # annotations. In these cases we simply drop the annotation and default argument from the comparison
    for prototype_param, legacy_param in zip(prototype_params, legacy_params):
        if legacy_param.name in name_only_params:
            prototype_param._annotation = prototype_param._default = inspect.Parameter.empty
            legacy_param._annotation = legacy_param._default = inspect.Parameter.empty
        elif legacy_param.annotation is inspect.Parameter.empty:
            prototype_param._annotation = inspect.Parameter.empty

    assert prototype_params == legacy_params