test_transforms_v2.py 35.8 KB
Newer Older
1
2
import itertools
import pathlib
3
import pickle
4
5
6
7
8
9
10
11
12
import random

import numpy as np

import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms

13
from common_utils import assert_equal, cpu_and_cuda
14
from torch.utils._pytree import tree_flatten, tree_unflatten
15
from torchvision import tv_tensors
16
17
18
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.v2 import functional as F
Nicolas Hug's avatar
Nicolas Hug committed
19
from torchvision.transforms.v2._utils import check_type, is_pure_tensor, query_chw
20
from transforms_v2_legacy_utils import (
21
22
23
24
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
25
    make_multiple_bounding_boxes,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    make_segmentation_mask,
    make_video,
    make_videos,
)


def make_vanilla_tensor_images(*args, **kwargs):
    for image in make_images(*args, **kwargs):
        if image.ndim > 3:
            continue
        yield image.data


def make_pil_images(*args, **kwargs):
    for image in make_vanilla_tensor_images(*args, **kwargs):
        yield to_pil_image(image)


def make_vanilla_tensor_bounding_boxes(*args, **kwargs):
45
    for bounding_boxes in make_multiple_bounding_boxes(*args, **kwargs):
46
        yield bounding_boxes.data
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


def parametrize(transforms_with_inputs):
    return pytest.mark.parametrize(
        ("transform", "input"),
        [
            pytest.param(
                transform,
                input,
                id=f"{type(transform).__name__}-{type(input).__module__}.{type(input).__name__}-{idx}",
            )
            for transform, inputs in transforms_with_inputs
            for idx, input in enumerate(inputs)
        ],
    )


def auto_augment_adapter(transform, input, device):
    adapted_input = {}
    image_or_video_found = False
    for key, value in input.items():
68
        if isinstance(value, (tv_tensors.BoundingBoxes, tv_tensors.Mask)):
69
70
            # AA transforms don't support bounding boxes or masks
            continue
71
        elif check_type(value, (tv_tensors.Image, tv_tensors.Video, is_pure_tensor, PIL.Image.Image)):
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            if image_or_video_found:
                # AA transforms only support a single image or video
                continue
            image_or_video_found = True
        adapted_input[key] = value
    return adapted_input


def linear_transformation_adapter(transform, input, device):
    flat_inputs = list(input.values())
    c, h, w = query_chw(
        [
            item
            for item, needs_transform in zip(flat_inputs, transforms.Transform()._needs_transform_list(flat_inputs))
            if needs_transform
        ]
    )
    num_elements = c * h * w
    transform.transformation_matrix = torch.randn((num_elements, num_elements), device=device)
    transform.mean_vector = torch.randn((num_elements,), device=device)
    return {key: value for key, value in input.items() if not isinstance(value, PIL.Image.Image)}


def normalize_adapter(transform, input, device):
    adapted_input = {}
    for key, value in input.items():
        if isinstance(value, PIL.Image.Image):
            # normalize doesn't support PIL images
            continue
101
        elif check_type(value, (tv_tensors.Image, tv_tensors.Video, is_pure_tensor)):
102
            # normalize doesn't support integer images
103
            value = F.to_dtype(value, torch.float32, scale=True)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        adapted_input[key] = value
    return adapted_input


class TestSmoke:
    @pytest.mark.parametrize(
        ("transform", "adapter"),
        [
            (transforms.RandomErasing(p=1.0), None),
            (transforms.AugMix(), auto_augment_adapter),
            (transforms.AutoAugment(), auto_augment_adapter),
            (transforms.RandAugment(), auto_augment_adapter),
            (transforms.TrivialAugmentWide(), auto_augment_adapter),
            (transforms.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.3, hue=0.15), None),
            (transforms.RandomAdjustSharpness(sharpness_factor=0.5, p=1.0), None),
            (transforms.RandomAutocontrast(p=1.0), None),
            (transforms.RandomEqualize(p=1.0), None),
            (transforms.RandomInvert(p=1.0), None),
122
            (transforms.RandomChannelPermutation(), None),
123
124
125
126
127
128
129
130
131
            (transforms.RandomPosterize(bits=4, p=1.0), None),
            (transforms.RandomSolarize(threshold=0.5, p=1.0), None),
            (transforms.CenterCrop([16, 16]), None),
            (transforms.ElasticTransform(sigma=1.0), None),
            (transforms.Pad(4), None),
            (transforms.RandomAffine(degrees=30.0), None),
            (transforms.RandomCrop([16, 16], pad_if_needed=True), None),
            (transforms.RandomHorizontalFlip(p=1.0), None),
            (transforms.RandomPerspective(p=1.0), None),
132
133
            (transforms.RandomResize(min_size=10, max_size=20, antialias=True), None),
            (transforms.RandomResizedCrop([16, 16], antialias=True), None),
134
            (transforms.RandomRotation(degrees=30), None),
135
            (transforms.RandomShortestSize(min_size=10, antialias=True), None),
136
137
            (transforms.RandomVerticalFlip(p=1.0), None),
            (transforms.Resize([16, 16], antialias=True), None),
138
            (transforms.ScaleJitter((16, 16), scale_range=(0.8, 1.2), antialias=True), None),
139
            (transforms.ClampBoundingBoxes(), None),
140
            (transforms.ConvertBoundingBoxFormat(tv_tensors.BoundingBoxFormat.CXCYWH), None),
141
            (transforms.ConvertImageDtype(), None),
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
            (transforms.GaussianBlur(kernel_size=3), None),
            (
                transforms.LinearTransformation(
                    # These are just dummy values that will be filled by the adapter. We can't define them upfront,
                    # because for we neither know the spatial size nor the device at this point
                    transformation_matrix=torch.empty((1, 1)),
                    mean_vector=torch.empty((1,)),
                ),
                linear_transformation_adapter,
            ),
            (transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), normalize_adapter),
            (transforms.ToDtype(torch.float64), None),
            (transforms.UniformTemporalSubsample(num_samples=2), None),
        ],
        ids=lambda transform: type(transform).__name__,
    )
    @pytest.mark.parametrize("container_type", [dict, list, tuple])
    @pytest.mark.parametrize(
        "image_or_video",
        [
            make_image(),
            make_video(),
            next(make_pil_images(color_spaces=["RGB"])),
            next(make_vanilla_tensor_images()),
        ],
    )
168
    @pytest.mark.parametrize("de_serialize", [lambda t: t, lambda t: pickle.loads(pickle.dumps(t))])
169
    @pytest.mark.parametrize("device", cpu_and_cuda())
170
171
172
    def test_common(self, transform, adapter, container_type, image_or_video, de_serialize, device):
        transform = de_serialize(transform)

Philip Meier's avatar
Philip Meier committed
173
        canvas_size = F.get_size(image_or_video)
174
175
        input = dict(
            image_or_video=image_or_video,
176
177
            image_tv_tensor=make_image(size=canvas_size),
            video_tv_tensor=make_video(size=canvas_size),
Philip Meier's avatar
Philip Meier committed
178
            image_pil=next(make_pil_images(sizes=[canvas_size], color_spaces=["RGB"])),
179
            bounding_boxes_xyxy=make_bounding_boxes(
180
                format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size, batch_dims=(3,)
181
            ),
182
            bounding_boxes_xywh=make_bounding_boxes(
183
                format=tv_tensors.BoundingBoxFormat.XYWH, canvas_size=canvas_size, batch_dims=(4,)
184
            ),
185
            bounding_boxes_cxcywh=make_bounding_boxes(
186
                format=tv_tensors.BoundingBoxFormat.CXCYWH, canvas_size=canvas_size, batch_dims=(5,)
187
            ),
188
            bounding_boxes_degenerate_xyxy=tv_tensors.BoundingBoxes(
189
190
191
192
193
194
195
196
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [2, 0, 1, 1],  # x1 > x2, y1 < y2
                    [0, 2, 1, 1],  # x1 < x2, y1 > y2
                    [2, 2, 1, 1],  # x1 > x2, y1 > y2
                ],
197
                format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
198
                canvas_size=canvas_size,
199
            ),
200
            bounding_boxes_degenerate_xywh=tv_tensors.BoundingBoxes(
201
202
203
204
205
206
207
208
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
209
                format=tv_tensors.BoundingBoxFormat.XYWH,
Philip Meier's avatar
Philip Meier committed
210
                canvas_size=canvas_size,
211
            ),
212
            bounding_boxes_degenerate_cxcywh=tv_tensors.BoundingBoxes(
213
214
215
216
217
218
219
220
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
221
                format=tv_tensors.BoundingBoxFormat.CXCYWH,
Philip Meier's avatar
Philip Meier committed
222
                canvas_size=canvas_size,
223
            ),
Philip Meier's avatar
Philip Meier committed
224
225
            detection_mask=make_detection_mask(size=canvas_size),
            segmentation_mask=make_segmentation_mask(size=canvas_size),
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
            int=0,
            float=0.0,
            bool=True,
            none=None,
            str="str",
            path=pathlib.Path.cwd(),
            object=object(),
            tensor=torch.empty(5),
            array=np.empty(5),
        )
        if adapter is not None:
            input = adapter(transform, input, device)

        if container_type in {tuple, list}:
            input = container_type(input.values())

        input_flat, input_spec = tree_flatten(input)
        input_flat = [item.to(device) if isinstance(item, torch.Tensor) else item for item in input_flat]
        input = tree_unflatten(input_flat, input_spec)

        torch.manual_seed(0)
        output = transform(input)
        output_flat, output_spec = tree_flatten(output)

        assert output_spec == input_spec

        for output_item, input_item, should_be_transformed in zip(
            output_flat, input_flat, transforms.Transform()._needs_transform_list(input_flat)
        ):
            if should_be_transformed:
                assert type(output_item) is type(input_item)
            else:
                assert output_item is input_item

260
            if isinstance(input_item, tv_tensors.BoundingBoxes) and not isinstance(
261
262
263
264
265
266
267
                transform, transforms.ConvertBoundingBoxFormat
            ):
                assert output_item.format == input_item.format

        # Enforce that the transform does not turn a degenerate box marked by RandomIoUCrop (or any other future
        # transform that does this), back into a valid one.
        # TODO: we should test that against all degenerate boxes above
268
        for format in list(tv_tensors.BoundingBoxFormat):
269
            sample = dict(
270
                boxes=tv_tensors.BoundingBoxes([[0, 0, 0, 0]], format=format, canvas_size=(224, 244)),
271
272
                labels=torch.tensor([3]),
            )
273
            assert transforms.SanitizeBoundingBoxes()(sample)["boxes"].shape == (0, 4)
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288


@pytest.mark.parametrize(
    "flat_inputs",
    itertools.permutations(
        [
            next(make_vanilla_tensor_images()),
            next(make_vanilla_tensor_images()),
            next(make_pil_images()),
            make_image(),
            next(make_videos()),
        ],
        3,
    ),
)
289
290
def test_pure_tensor_heuristic(flat_inputs):
    def split_on_pure_tensor(to_split):
291
        # This takes a sequence that is structurally aligned with `flat_inputs` and splits its items into three parts:
292
293
        # 1. The first pure tensor. If none is present, this will be `None`
        # 2. A list of the remaining pure tensors
294
        # 3. A list of all other items
295
        pure_tensors = []
296
297
298
299
        others = []
        # Splitting always happens on the original `flat_inputs` to avoid any erroneous type changes by the transform to
        # affect the splitting.
        for item, inpt in zip(to_split, flat_inputs):
300
301
            (pure_tensors if is_pure_tensor(inpt) else others).append(item)
        return pure_tensors[0] if pure_tensors else None, pure_tensors[1:], others
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

    class CopyCloneTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt.clone() if isinstance(inpt, torch.Tensor) else inpt.copy()

        @staticmethod
        def was_applied(output, inpt):
            identity = output is inpt
            if identity:
                return False

            # Make sure nothing fishy is going on
            assert_equal(output, inpt)
            return True

317
    first_pure_tensor_input, other_pure_tensor_inputs, other_inputs = split_on_pure_tensor(flat_inputs)
318
319
320
321

    transform = CopyCloneTransform()
    transformed_sample = transform(flat_inputs)

322
    first_pure_tensor_output, other_pure_tensor_outputs, other_outputs = split_on_pure_tensor(transformed_sample)
323

324
    if first_pure_tensor_input is not None:
325
        if other_inputs:
326
            assert not transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
327
        else:
328
            assert transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
329

330
    for output, inpt in zip(other_pure_tensor_outputs, other_pure_tensor_inputs):
331
332
333
334
335
336
337
338
339
        assert not transform.was_applied(output, inpt)

    for input, output in zip(other_inputs, other_outputs):
        assert transform.was_applied(output, input)


class TestTransform:
    @pytest.mark.parametrize(
        "inpt_type",
340
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    )
    def test_check_transformed_types(self, inpt_type, mocker):
        # This test ensures that we correctly handle which types to transform and which to bypass
        t = transforms.Transform()
        inpt = mocker.MagicMock(spec=inpt_type)

        if inpt_type in (np.ndarray, str, int):
            output = t(inpt)
            assert output is inpt
        else:
            with pytest.raises(NotImplementedError):
                t(inpt)


355
class TestToImage:
356
357
    @pytest.mark.parametrize(
        "inpt_type",
358
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
359
360
361
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch(
362
            "torchvision.transforms.v2.functional.to_image",
363
364
365
366
            return_value=torch.rand(1, 3, 8, 8),
        )

        inpt = mocker.MagicMock(spec=inpt_type)
367
        transform = transforms.ToImage()
368
        transform(inpt)
369
        if inpt_type in (tv_tensors.BoundingBoxes, tv_tensors.Image, str, int):
370
371
372
373
374
375
376
377
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestToPILImage:
    @pytest.mark.parametrize(
        "inpt_type",
378
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
379
380
    )
    def test__transform(self, inpt_type, mocker):
381
        fn = mocker.patch("torchvision.transforms.v2.functional.to_pil_image")
382
383
384
385

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToPILImage()
        transform(inpt)
386
        if inpt_type in (PIL.Image.Image, tv_tensors.BoundingBoxes, str, int):
387
388
389
390
391
392
393
394
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt, mode=transform.mode)


class TestToTensor:
    @pytest.mark.parametrize(
        "inpt_type",
395
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
396
397
398
399
400
401
402
403
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.functional.to_tensor")

        inpt = mocker.MagicMock(spec=inpt_type)
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            transform = transforms.ToTensor()
        transform(inpt)
404
        if inpt_type in (tv_tensors.Image, torch.Tensor, tv_tensors.BoundingBoxes, str, int):
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestContainers:
    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    def test_assertions(self, transform_cls):
        with pytest.raises(TypeError, match="Argument transforms should be a sequence of callables"):
            transform_cls(transforms.RandomCrop(28))

    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    @pytest.mark.parametrize(
        "trfms",
        [
            [transforms.Pad(2), transforms.RandomCrop(28)],
            [lambda x: 2.0 * x, transforms.Pad(2), transforms.RandomCrop(28)],
            [transforms.Pad(2), lambda x: 2.0 * x, transforms.RandomCrop(28)],
        ],
    )
    def test_ctor(self, transform_cls, trfms):
        c = transform_cls(trfms)
        inpt = torch.rand(1, 3, 32, 32)
        output = c(inpt)
        assert isinstance(output, torch.Tensor)
        assert output.ndim == 4


class TestRandomChoice:
    def test_assertions(self):
435
        with pytest.raises(ValueError, match="Length of p doesn't match the number of transforms"):
436
            transforms.RandomChoice([transforms.Pad(2), transforms.RandomCrop(28)], p=[1])
437
438
439


class TestRandomIoUCrop:
440
    @pytest.mark.parametrize("device", cpu_and_cuda())
441
    @pytest.mark.parametrize("options", [[0.5, 0.9], [2.0]])
Philip Meier's avatar
Philip Meier committed
442
443
444
    def test__get_params(self, device, options):
        orig_h, orig_w = size = (24, 32)
        image = make_image(size)
445
        bboxes = tv_tensors.BoundingBoxes(
446
447
            torch.tensor([[1, 1, 10, 10], [20, 20, 23, 23], [1, 20, 10, 23], [20, 1, 23, 10]]),
            format="XYXY",
Philip Meier's avatar
Philip Meier committed
448
            canvas_size=size,
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
            device=device,
        )
        sample = [image, bboxes]

        transform = transforms.RandomIoUCrop(sampler_options=options)

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params(sample)

            if options == [2.0]:
                assert len(params) == 0
                return

            assert len(params["is_within_crop_area"]) > 0
            assert params["is_within_crop_area"].dtype == torch.bool

            assert int(transform.min_scale * orig_h) <= params["height"] <= int(transform.max_scale * orig_h)
            assert int(transform.min_scale * orig_w) <= params["width"] <= int(transform.max_scale * orig_w)

            left, top = params["left"], params["top"]
            new_h, new_w = params["height"], params["width"]
            ious = box_iou(
                bboxes,
                torch.tensor([[left, top, left + new_w, top + new_h]], dtype=bboxes.dtype, device=bboxes.device),
            )
            assert ious.max() >= options[0] or ious.max() >= options[1], f"{ious} vs {options}"

    def test__transform_empty_params(self, mocker):
        transform = transforms.RandomIoUCrop(sampler_options=[2.0])
480
481
        image = tv_tensors.Image(torch.rand(1, 3, 4, 4))
        bboxes = tv_tensors.BoundingBoxes(torch.tensor([[1, 1, 2, 2]]), format="XYXY", canvas_size=(4, 4))
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
        label = torch.tensor([1])
        sample = [image, bboxes, label]
        # Let's mock transform._get_params to control the output:
        transform._get_params = mocker.MagicMock(return_value={})
        output = transform(sample)
        torch.testing.assert_close(output, sample)

    def test_forward_assertion(self):
        transform = transforms.RandomIoUCrop()
        with pytest.raises(
            TypeError,
            match="requires input sample to contain tensor or PIL images and bounding boxes",
        ):
            transform(torch.tensor(0))

    def test__transform(self, mocker):
        transform = transforms.RandomIoUCrop()

Philip Meier's avatar
Philip Meier committed
500
501
        size = (32, 24)
        image = make_image(size)
502
        bboxes = make_bounding_boxes(format="XYXY", canvas_size=size, batch_dims=(6,))
Philip Meier's avatar
Philip Meier committed
503
        masks = make_detection_mask(size, num_objects=6)
504
505
506
507
508
509
510
511
512
513
514

        sample = [image, bboxes, masks]

        is_within_crop_area = torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool)

        params = dict(top=1, left=2, height=12, width=12, is_within_crop_area=is_within_crop_area)
        transform._get_params = mocker.MagicMock(return_value=params)
        output = transform(sample)

        # check number of bboxes vs number of labels:
        output_bboxes = output[1]
515
        assert isinstance(output_bboxes, tv_tensors.BoundingBoxes)
516
517
518
        assert (output_bboxes[~is_within_crop_area] == 0).all()

        output_masks = output[2]
519
        assert isinstance(output_masks, tv_tensors.Mask)
520
521
522


class TestScaleJitter:
Philip Meier's avatar
Philip Meier committed
523
524
    def test__get_params(self):
        canvas_size = (24, 32)
525
526
527
528
        target_size = (16, 12)
        scale_range = (0.5, 1.5)

        transform = transforms.ScaleJitter(target_size=target_size, scale_range=scale_range)
Philip Meier's avatar
Philip Meier committed
529
530

        sample = make_image(canvas_size)
531
532
533
534
535
536
537
538
539
540
541
542

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params([sample])

            assert "size" in params
            size = params["size"]

            assert isinstance(size, tuple) and len(size) == 2
            height, width = size

Philip Meier's avatar
Philip Meier committed
543
544
            r_min = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[0]
            r_max = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[1]
545

Philip Meier's avatar
Philip Meier committed
546
547
            assert int(canvas_size[0] * r_min) <= height <= int(canvas_size[0] * r_max)
            assert int(canvas_size[1] * r_min) <= width <= int(canvas_size[1] * r_max)
548
549
550
551


class TestRandomShortestSize:
    @pytest.mark.parametrize("min_size,max_size", [([5, 9], 20), ([5, 9], None)])
Philip Meier's avatar
Philip Meier committed
552
553
    def test__get_params(self, min_size, max_size):
        canvas_size = (3, 10)
554

555
        transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
556

Philip Meier's avatar
Philip Meier committed
557
        sample = make_image(canvas_size)
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        params = transform._get_params([sample])

        assert "size" in params
        size = params["size"]

        assert isinstance(size, tuple) and len(size) == 2

        longer = max(size)
        shorter = min(size)
        if max_size is not None:
            assert longer <= max_size
            assert shorter <= max_size
        else:
            assert shorter in min_size


class TestLinearTransformation:
    def test_assertions(self):
        with pytest.raises(ValueError, match="transformation_matrix should be square"):
            transforms.LinearTransformation(torch.rand(2, 3), torch.rand(5))

        with pytest.raises(ValueError, match="mean_vector should have the same length"):
            transforms.LinearTransformation(torch.rand(3, 3), torch.rand(5))

    @pytest.mark.parametrize(
        "inpt",
        [
            122 * torch.ones(1, 3, 8, 8),
            122.0 * torch.ones(1, 3, 8, 8),
587
            tv_tensors.Image(122 * torch.ones(1, 3, 8, 8)),
588
589
590
591
592
593
594
595
596
597
            PIL.Image.new("RGB", (8, 8), (122, 122, 122)),
        ],
    )
    def test__transform(self, inpt):

        v = 121 * torch.ones(3 * 8 * 8)
        m = torch.ones(3 * 8 * 8, 3 * 8 * 8)
        transform = transforms.LinearTransformation(m, v)

        if isinstance(inpt, PIL.Image.Image):
598
            with pytest.raises(TypeError, match="does not support PIL images"):
599
600
601
602
603
604
605
606
607
608
609
610
611
                transform(inpt)
        else:
            output = transform(inpt)
            assert isinstance(output, torch.Tensor)
            assert output.unique() == 3 * 8 * 8
            assert output.dtype == inpt.dtype


class TestRandomResize:
    def test__get_params(self):
        min_size = 3
        max_size = 6

612
        transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
613
614
615
616
617
618
619
620
621
622

        for _ in range(10):
            params = transform._get_params([])

            assert isinstance(params["size"], list) and len(params["size"]) == 1
            size = params["size"][0]

            assert min_size <= size < max_size


623
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
624
625
@pytest.mark.parametrize("label_type", (torch.Tensor, int))
@pytest.mark.parametrize("dataset_return_type", (dict, tuple))
626
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
627
628
def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):

629
    image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, 250, 250), dtype=torch.uint8))
630
631
632
633
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
634
        assert is_pure_tensor(image)
635
636
637
638
639
640
641
642
643
644
645

    label = 1 if label_type is int else torch.tensor([1])

    if dataset_return_type is dict:
        sample = {
            "image": image,
            "label": label,
        }
    else:
        sample = image, label

646
647
648
649
650
651
    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

652
653
    t = transforms.Compose(
        [
654
            transforms.RandomResizedCrop((224, 224), antialias=True),
655
656
657
658
659
            transforms.RandomHorizontalFlip(p=1),
            transforms.RandAugment(),
            transforms.TrivialAugmentWide(),
            transforms.AugMix(),
            transforms.AutoAugment(),
660
            to_tensor,
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
            # TODO: ConvertImageDtype is a pass-through on PIL images, is that
            # intended?  This results in a failure if we convert to tensor after
            # it, because the image would still be uint8 which make Normalize
            # fail.
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]),
            transforms.RandomErasing(p=1),
        ]
    )

    out = t(sample)

    assert type(out) == type(sample)

    if dataset_return_type is tuple:
        out_image, out_label = out
    else:
        assert out.keys() == sample.keys()
        out_image, out_label = out.values()

    assert out_image.shape[-2:] == (224, 224)
    assert out_label == label


685
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
686
@pytest.mark.parametrize("data_augmentation", ("hflip", "lsj", "multiscale", "ssd", "ssdlite"))
687
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
688
689
690
@pytest.mark.parametrize("sanitize", (True, False))
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
    torch.manual_seed(0)
691
692
693
694
695
696
697

    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

698
699
700
    if data_augmentation == "hflip":
        t = [
            transforms.RandomHorizontalFlip(p=1),
701
            to_tensor,
702
703
704
705
706
707
708
709
710
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "lsj":
        t = [
            transforms.ScaleJitter(target_size=(1024, 1024), antialias=True),
            # Note: replaced FixedSizeCrop with RandomCrop, becuase we're
            # leaving FixedSizeCrop in prototype for now, and it expects Label
            # classes which we won't release yet.
            # transforms.FixedSizeCrop(
711
            #     size=(1024, 1024), fill=defaultdict(lambda: (123.0, 117.0, 104.0), {tv_tensors.Mask: 0})
712
713
714
            # ),
            transforms.RandomCrop((1024, 1024), pad_if_needed=True),
            transforms.RandomHorizontalFlip(p=1),
715
            to_tensor,
716
717
718
719
720
721
722
723
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "multiscale":
        t = [
            transforms.RandomShortestSize(
                min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
            ),
            transforms.RandomHorizontalFlip(p=1),
724
            to_tensor,
725
726
727
728
729
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssd":
        t = [
            transforms.RandomPhotometricDistort(p=1),
730
            transforms.RandomZoomOut(fill={"others": (123.0, 117.0, 104.0), tv_tensors.Mask: 0}, p=1),
731
732
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
733
            to_tensor,
734
735
736
737
738
739
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssdlite":
        t = [
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
740
            to_tensor,
741
742
743
            transforms.ConvertImageDtype(torch.float),
        ]
    if sanitize:
744
        t += [transforms.SanitizeBoundingBoxes()]
745
746
747
748
749
    t = transforms.Compose(t)

    num_boxes = 5
    H = W = 250

750
    image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8))
751
752
753
754
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
755
        assert is_pure_tensor(image)
756
757
758
759
760
761

    label = torch.randint(0, 10, size=(num_boxes,))

    boxes = torch.randint(0, min(H, W) // 2, size=(num_boxes, 4))
    boxes[:, 2:] += boxes[:, :2]
    boxes = boxes.clamp(min=0, max=min(H, W))
762
    boxes = tv_tensors.BoundingBoxes(boxes, format="XYXY", canvas_size=(H, W))
763

764
    masks = tv_tensors.Mask(torch.randint(0, 2, size=(num_boxes, H, W), dtype=torch.uint8))
765
766
767
768
769
770
771
772
773
774

    sample = {
        "image": image,
        "label": label,
        "boxes": boxes,
        "masks": masks,
    }

    out = t(sample)

775
    if isinstance(to_tensor, transforms.ToTensor) and image_type is not tv_tensors.Image:
776
        assert is_pure_tensor(out["image"])
777
    else:
778
        assert isinstance(out["image"], tv_tensors.Image)
779
780
781
782
783
784
    assert isinstance(out["label"], type(sample["label"]))

    num_boxes_expected = {
        # ssd and ssdlite contain RandomIoUCrop which may "remove" some bbox. It
        # doesn't remove them strictly speaking, it just marks some boxes as
        # degenerate and those boxes will be later removed by
785
        # SanitizeBoundingBoxes(), which we add to the pipelines if the sanitize
786
787
788
        # param is True.
        # Note that the values below are probably specific to the random seed
        # set above (which is fine).
789
        (True, "ssd"): 5,
790
791
792
793
794
795
796
        (True, "ssdlite"): 4,
    }.get((sanitize, data_augmentation), num_boxes)

    assert out["boxes"].shape[0] == out["masks"].shape[0] == out["label"].shape[0] == num_boxes_expected


@pytest.mark.parametrize("min_size", (1, 10))
797
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
798
799
800
801
802
803
804
805
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_sanitize_bounding_boxes(min_size, labels_getter, sample_type):

    if sample_type is tuple and not isinstance(labels_getter, str):
        # The "lambda inputs: inputs["labels"]" labels_getter used in this test
        # doesn't work if the input is a tuple.
        return

806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
    H, W = 256, 128

    boxes_and_validity = [
        ([0, 1, 10, 1], False),  # Y1 == Y2
        ([0, 1, 0, 20], False),  # X1 == X2
        ([0, 0, min_size - 1, 10], False),  # H < min_size
        ([0, 0, 10, min_size - 1], False),  # W < min_size
        ([0, 0, 10, H + 1], False),  # Y2 > H
        ([0, 0, W + 1, 10], False),  # X2 > W
        ([-1, 1, 10, 20], False),  # any < 0
        ([0, 0, -1, 20], False),  # any < 0
        ([0, 0, -10, -1], False),  # any < 0
        ([0, 0, min_size, 10], True),  # H < min_size
        ([0, 0, 10, min_size], True),  # W < min_size
        ([0, 0, W, H], True),  # TODO: Is that actually OK?? Should it be -1?
        ([1, 1, 30, 20], True),
        ([0, 0, 10, 10], True),
        ([1, 1, 30, 20], True),
    ]

    random.shuffle(boxes_and_validity)  # For test robustness: mix order of wrong and correct cases
    boxes, is_valid_mask = zip(*boxes_and_validity)
    valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]

    boxes = torch.tensor(boxes)
    labels = torch.arange(boxes.shape[0])

833
    boxes = tv_tensors.BoundingBoxes(
834
        boxes,
835
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
836
        canvas_size=(H, W),
837
838
    )

839
    masks = tv_tensors.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
840
841
    whatever = torch.rand(10)
    input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
842
    sample = {
843
        "image": input_img,
844
845
        "labels": labels,
        "boxes": boxes,
846
        "whatever": whatever,
847
848
849
850
        "None": None,
        "masks": masks,
    }

851
852
853
854
    if sample_type is tuple:
        img = sample.pop("image")
        sample = (img, sample)

855
    out = transforms.SanitizeBoundingBoxes(min_size=min_size, labels_getter=labels_getter)(sample)
856

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
    if sample_type is tuple:
        out_image = out[0]
        out_labels = out[1]["labels"]
        out_boxes = out[1]["boxes"]
        out_masks = out[1]["masks"]
        out_whatever = out[1]["whatever"]
    else:
        out_image = out["image"]
        out_labels = out["labels"]
        out_boxes = out["boxes"]
        out_masks = out["masks"]
        out_whatever = out["whatever"]

    assert out_image is input_img
    assert out_whatever is whatever
872

873
874
    assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
    assert isinstance(out_masks, tv_tensors.Mask)
875

876
    if labels_getter is None or (callable(labels_getter) and labels_getter({"labels": "blah"}) is None):
877
        assert out_labels is labels
878
    else:
879
880
        assert isinstance(out_labels, torch.Tensor)
        assert out_boxes.shape[0] == out_labels.shape[0] == out_masks.shape[0]
881
        # This works because we conveniently set labels to arange(num_boxes)
882
        assert out_labels.tolist() == valid_indices
883
884


885
886
887
888
889
890
891
892
893
894
def test_sanitize_bounding_boxes_no_label():
    # Non-regression test for https://github.com/pytorch/vision/issues/7878

    img = make_image()
    boxes = make_bounding_boxes()

    with pytest.raises(ValueError, match="or a two-tuple whose second item is a dict"):
        transforms.SanitizeBoundingBoxes()(img, boxes)

    out_img, out_boxes = transforms.SanitizeBoundingBoxes(labels_getter=None)(img, boxes)
895
896
    assert isinstance(out_img, tv_tensors.Image)
    assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
897
898


899
900
def test_sanitize_bounding_boxes_errors():

901
    good_bbox = tv_tensors.BoundingBoxes(
902
        [[0, 0, 10, 10]],
903
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
904
        canvas_size=(20, 20),
905
906
907
    )

    with pytest.raises(ValueError, match="min_size must be >= 1"):
908
        transforms.SanitizeBoundingBoxes(min_size=0)
909
    with pytest.raises(ValueError, match="labels_getter should either be 'default'"):
910
        transforms.SanitizeBoundingBoxes(labels_getter=12)
911
912
913

    with pytest.raises(ValueError, match="Could not infer where the labels are"):
        bad_labels_key = {"bbox": good_bbox, "BAD_KEY": torch.arange(good_bbox.shape[0])}
914
        transforms.SanitizeBoundingBoxes()(bad_labels_key)
915
916
917

    with pytest.raises(ValueError, match="must be a tensor"):
        not_a_tensor = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0]).tolist()}
918
        transforms.SanitizeBoundingBoxes()(not_a_tensor)
919
920
921

    with pytest.raises(ValueError, match="Number of boxes"):
        different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
922
        transforms.SanitizeBoundingBoxes()(different_sizes)
923

924

Philip Meier's avatar
Philip Meier committed
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
class TestLambda:
    inputs = pytest.mark.parametrize("input", [object(), torch.empty(()), np.empty(()), "string", 1, 0.0])

    @inputs
    def test_default(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        transform = transforms.Lambda(was_applied_fn)

        transform(input)

        assert was_applied

    @inputs
    def test_with_types(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        types = (torch.Tensor, np.ndarray)
        transform = transforms.Lambda(was_applied_fn, *types)

        transform(input)

        assert was_applied is isinstance(input, types)