mobilenetv2.py 5.97 KB
Newer Older
1
2
from functools import partial
from typing import Any, Optional, Union
3

4
5
6
from torch import nn, Tensor
from torch.ao.quantization import DeQuantStub, QuantStub
from torchvision.models.mobilenetv2 import InvertedResidual, MobileNet_V2_Weights, MobileNetV2
7

8
from ...ops.misc import Conv2dNormActivation
9
from ...transforms._presets import ImageClassification
10
from .._api import register_model, Weights, WeightsEnum
11
from .._meta import _IMAGENET_CATEGORIES
12
from .._utils import _ovewrite_named_param, handle_legacy_interface
13
from .utils import _fuse_modules, _replace_relu, quantize_model
14
15


16
17
18
19
20
__all__ = [
    "QuantizableMobileNetV2",
    "MobileNet_V2_QuantizedWeights",
    "mobilenet_v2",
]
21
22
23


class QuantizableInvertedResidual(InvertedResidual):
24
    def __init__(self, *args: Any, **kwargs: Any) -> None:
25
        super().__init__(*args, **kwargs)
26
27
        self.skip_add = nn.quantized.FloatFunctional()

28
    def forward(self, x: Tensor) -> Tensor:
29
30
31
32
33
        if self.use_res_connect:
            return self.skip_add.add(x, self.conv(x))
        else:
            return self.conv(x)

34
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
35
        for idx in range(len(self.conv)):
36
            if type(self.conv[idx]) is nn.Conv2d:
37
                _fuse_modules(self.conv, [str(idx), str(idx + 1)], is_qat, inplace=True)
38
39
40


class QuantizableMobileNetV2(MobileNetV2):
41
    def __init__(self, *args: Any, **kwargs: Any) -> None:
42
43
44
45
46
47
        """
        MobileNet V2 main class

        Args:
           Inherits args from floating point MobileNetV2
        """
48
        super().__init__(*args, **kwargs)
49
50
51
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

52
    def forward(self, x: Tensor) -> Tensor:
53
54
55
56
57
        x = self.quant(x)
        x = self._forward_impl(x)
        x = self.dequant(x)
        return x

58
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
59
        for m in self.modules():
60
            if type(m) is Conv2dNormActivation:
61
                _fuse_modules(m, ["0", "1", "2"], is_qat, inplace=True)
62
            if type(m) is QuantizableInvertedResidual:
63
                m.fuse_model(is_qat)
64
65


66
67
68
69
70
71
72
73
74
75
76
class MobileNet_V2_QuantizedWeights(WeightsEnum):
    IMAGENET1K_QNNPACK_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            "num_params": 3504872,
            "min_size": (1, 1),
            "categories": _IMAGENET_CATEGORIES,
            "backend": "qnnpack",
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2",
            "unquantized": MobileNet_V2_Weights.IMAGENET1K_V1,
77
78
79
80
81
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 71.658,
                    "acc@5": 90.150,
                }
82
            },
83
84
85
86
            "_docs": """
                These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
                weights listed below.
            """,
87
88
89
90
91
        },
    )
    DEFAULT = IMAGENET1K_QNNPACK_V1


92
@register_model(name="quantized_mobilenet_v2")
93
94
95
96
97
98
99
100
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1
        if kwargs.get("quantize", False)
        else MobileNet_V2_Weights.IMAGENET1K_V1,
    )
)
101
def mobilenet_v2(
102
103
    *,
    weights: Optional[Union[MobileNet_V2_QuantizedWeights, MobileNet_V2_Weights]] = None,
104
105
106
107
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableMobileNetV2:
108
109
    """
    Constructs a MobileNetV2 architecture from
110
    `MobileNetV2: Inverted Residuals and Linear Bottlenecks
111
112
    <https://arxiv.org/abs/1801.04381>`_.

113
114
115
116
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.
117
118

    Args:
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        weights (:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        quantize (bool, optional): If True, returns a quantized version of the model. Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableMobileNetV2``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv2.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.quantization.MobileNet_V2_QuantizedWeights
        :members:
    .. autoclass:: torchvision.models.MobileNet_V2_Weights
        :members:
        :noindex:
135
    """
136
137
138
139
140
141
142
143
    weights = (MobileNet_V2_QuantizedWeights if quantize else MobileNet_V2_Weights).verify(weights)

    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "qnnpack")

144
145
146
147
148
    model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs)
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

149
150
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
151
152

    return model
153
154
155
156
157
158
159
160
161
162
163
164


# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs
from ..mobilenetv2 import model_urls  # noqa: F401


quant_model_urls = _ModelURLs(
    {
        "mobilenet_v2_qnnpack": MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1.url,
    }
)