mobilenetv2.py 5.91 KB
Newer Older
1
2
from functools import partial
from typing import Any, Optional, Union
3

4
5
6
from torch import nn, Tensor
from torch.ao.quantization import DeQuantStub, QuantStub
from torchvision.models.mobilenetv2 import InvertedResidual, MobileNet_V2_Weights, MobileNetV2
7

8
from ...ops.misc import Conv2dNormActivation
9
from ...transforms._presets import ImageClassification
10
from .._api import Weights, WeightsEnum
11
from .._meta import _IMAGENET_CATEGORIES
12
from .._utils import _ovewrite_named_param, handle_legacy_interface
13
from .utils import _fuse_modules, _replace_relu, quantize_model
14
15


16
17
18
19
20
__all__ = [
    "QuantizableMobileNetV2",
    "MobileNet_V2_QuantizedWeights",
    "mobilenet_v2",
]
21
22
23


class QuantizableInvertedResidual(InvertedResidual):
24
    def __init__(self, *args: Any, **kwargs: Any) -> None:
25
        super().__init__(*args, **kwargs)
26
27
        self.skip_add = nn.quantized.FloatFunctional()

28
    def forward(self, x: Tensor) -> Tensor:
29
30
31
32
33
        if self.use_res_connect:
            return self.skip_add.add(x, self.conv(x))
        else:
            return self.conv(x)

34
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
35
        for idx in range(len(self.conv)):
36
            if type(self.conv[idx]) is nn.Conv2d:
37
                _fuse_modules(self.conv, [str(idx), str(idx + 1)], is_qat, inplace=True)
38
39
40


class QuantizableMobileNetV2(MobileNetV2):
41
    def __init__(self, *args: Any, **kwargs: Any) -> None:
42
43
44
45
46
47
        """
        MobileNet V2 main class

        Args:
           Inherits args from floating point MobileNetV2
        """
48
        super().__init__(*args, **kwargs)
49
50
51
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

52
    def forward(self, x: Tensor) -> Tensor:
53
54
55
56
57
        x = self.quant(x)
        x = self._forward_impl(x)
        x = self.dequant(x)
        return x

58
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
59
        for m in self.modules():
60
            if type(m) is Conv2dNormActivation:
61
                _fuse_modules(m, ["0", "1", "2"], is_qat, inplace=True)
62
            if type(m) is QuantizableInvertedResidual:
63
                m.fuse_model(is_qat)
64
65


66
67
68
69
70
71
72
73
74
75
76
class MobileNet_V2_QuantizedWeights(WeightsEnum):
    IMAGENET1K_QNNPACK_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            "num_params": 3504872,
            "min_size": (1, 1),
            "categories": _IMAGENET_CATEGORIES,
            "backend": "qnnpack",
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2",
            "unquantized": MobileNet_V2_Weights.IMAGENET1K_V1,
77
78
79
80
81
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 71.658,
                    "acc@5": 90.150,
                }
82
            },
83
84
85
86
            "_docs": """
                These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
                weights listed below.
            """,
87
88
89
90
91
92
93
94
95
96
97
98
99
        },
    )
    DEFAULT = IMAGENET1K_QNNPACK_V1


@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1
        if kwargs.get("quantize", False)
        else MobileNet_V2_Weights.IMAGENET1K_V1,
    )
)
100
def mobilenet_v2(
101
102
    *,
    weights: Optional[Union[MobileNet_V2_QuantizedWeights, MobileNet_V2_Weights]] = None,
103
104
105
106
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableMobileNetV2:
107
108
    """
    Constructs a MobileNetV2 architecture from
109
    `MobileNetV2: Inverted Residuals and Linear Bottlenecks
110
111
    <https://arxiv.org/abs/1801.04381>`_.

112
113
114
115
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.
116
117

    Args:
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        weights (:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        quantize (bool, optional): If True, returns a quantized version of the model. Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableMobileNetV2``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv2.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.quantization.MobileNet_V2_QuantizedWeights
        :members:
    .. autoclass:: torchvision.models.MobileNet_V2_Weights
        :members:
        :noindex:
134
    """
135
136
137
138
139
140
141
142
    weights = (MobileNet_V2_QuantizedWeights if quantize else MobileNet_V2_Weights).verify(weights)

    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "qnnpack")

143
144
145
146
147
    model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs)
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

148
149
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
150
151

    return model
152
153
154
155
156
157
158
159
160
161
162
163


# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs
from ..mobilenetv2 import model_urls  # noqa: F401


quant_model_urls = _ModelURLs(
    {
        "mobilenet_v2_qnnpack": MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1.url,
    }
)