Unverified Commit ac016599 authored by Lezwon Castelino's avatar Lezwon Castelino Committed by GitHub
Browse files

added revamped quantized mobilenetv2 docs (#6004)



* added quantized mobilenetv2 docs

* remove quotes
Co-authored-by: default avatarNicolas Hug <contact@nicolas-hug.com>
parent 3414322d
Quantized MobileNet V2
======================
.. currentmodule:: torchvision.models.quantization
The Quantized MobileNet V2 model is based on the `MobileNetV2: Inverted Residuals and Linear
Bottlenecks <https://arxiv.org/abs/1801.04381>`__ paper.
Model builders
--------------
The following model builders can be used to instantiate a quantized MobileNetV2
model, with or without pre-trained weights. All the model builders internally
rely on the ``torchvision.models.quantization.mobilenetv2.QuantizableMobileNetV2``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv2.py>`_
for more details about this class.
.. autosummary::
:toctree: generated/
:template: function.rst
mobilenet_v2
......@@ -76,6 +76,7 @@ pre-trained weights:
:maxdepth: 1
models/googlenet_quant
models/mobilenetv2_quant
Table of all available quantized classification weights
......
......@@ -101,7 +101,7 @@ def mobilenet_v2(
) -> QuantizableMobileNetV2:
"""
Constructs a MobileNetV2 architecture from
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks"
`MobileNetV2: Inverted Residuals and Linear Bottlenecks
<https://arxiv.org/abs/1801.04381>`_.
Note that quantize = True returns a quantized model with 8 bit
......@@ -109,10 +109,22 @@ def mobilenet_v2(
GPU inference is not yet supported
Args:
weights (GoogLeNet_QuantizedWeights or GoogLeNet_Weights, optional): The pretrained
weights for the model
progress (bool): If True, displays a progress bar of the download to stderr
quantize(bool): If True, returns a quantized model, else returns a float model
weights (:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
pretrained weights for the model. See
:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
quantize (bool, optional): If True, returns a quantized version of the model. Default is False.
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableMobileNetV2``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv2.py>`_
for more details about this class.
.. autoclass:: torchvision.models.quantization.MobileNet_V2_QuantizedWeights
:members:
.. autoclass:: torchvision.models.MobileNet_V2_Weights
:members:
:noindex:
"""
weights = (MobileNet_V2_QuantizedWeights if quantize else MobileNet_V2_Weights).verify(weights)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment