mobilenetv3.py 12.2 KB
Newer Older
1
import warnings
2
from functools import partial
3
from typing import Any, Callable, List, Optional, Sequence
4

5
6
7
import torch
from torch import nn, Tensor

8
from .._internally_replaced_utils import load_state_dict_from_url
9
10
from ..ops.misc import ConvNormActivation, SqueezeExcitation as SElayer
from ._utils import _make_divisible
11
12
13
14
15
16
17


__all__ = ["MobileNetV3", "mobilenet_v3_large", "mobilenet_v3_small"]


model_urls = {
    "mobilenet_v3_large": "https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth",
18
    "mobilenet_v3_small": "https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth",
19
20
21
}


22
class SqueezeExcitation(SElayer):
23
24
    """DEPRECATED"""

25
26
    def __init__(self, input_channels: int, squeeze_factor: int = 4):
        squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8)
27
28
        super().__init__(input_channels, squeeze_channels, scale_activation=nn.Hardsigmoid)
        self.relu = self.activation
29
        delattr(self, "activation")
30
        warnings.warn(
31
            "This SqueezeExcitation class is deprecated and will be removed in future versions. "
32
33
34
            "Use torchvision.ops.misc.SqueezeExcitation instead.",
            FutureWarning,
        )
35
36
37


class InvertedResidualConfig:
38
    # Stores information listed at Tables 1 and 2 of the MobileNetV3 paper
39
40
41
42
43
44
45
46
47
48
49
50
    def __init__(
        self,
        input_channels: int,
        kernel: int,
        expanded_channels: int,
        out_channels: int,
        use_se: bool,
        activation: str,
        stride: int,
        dilation: int,
        width_mult: float,
    ):
51
52
53
54
55
56
57
        self.input_channels = self.adjust_channels(input_channels, width_mult)
        self.kernel = kernel
        self.expanded_channels = self.adjust_channels(expanded_channels, width_mult)
        self.out_channels = self.adjust_channels(out_channels, width_mult)
        self.use_se = use_se
        self.use_hs = activation == "HS"
        self.stride = stride
58
        self.dilation = dilation
59
60
61
62
63
64
65

    @staticmethod
    def adjust_channels(channels: int, width_mult: float):
        return _make_divisible(channels * width_mult, 8)


class InvertedResidual(nn.Module):
66
    # Implemented as described at section 5 of MobileNetV3 paper
67
68
69
70
71
72
    def __init__(
        self,
        cnf: InvertedResidualConfig,
        norm_layer: Callable[..., nn.Module],
        se_layer: Callable[..., nn.Module] = partial(SElayer, scale_activation=nn.Hardsigmoid),
    ):
73
74
        super().__init__()
        if not (1 <= cnf.stride <= 2):
75
            raise ValueError("illegal stride value")
76
77
78
79
80
81
82
83

        self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels

        layers: List[nn.Module] = []
        activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU

        # expand
        if cnf.expanded_channels != cnf.input_channels:
84
85
86
87
88
89
90
91
92
            layers.append(
                ConvNormActivation(
                    cnf.input_channels,
                    cnf.expanded_channels,
                    kernel_size=1,
                    norm_layer=norm_layer,
                    activation_layer=activation_layer,
                )
            )
93
94

        # depthwise
95
        stride = 1 if cnf.dilation > 1 else cnf.stride
96
97
98
99
100
101
102
103
104
105
106
107
        layers.append(
            ConvNormActivation(
                cnf.expanded_channels,
                cnf.expanded_channels,
                kernel_size=cnf.kernel,
                stride=stride,
                dilation=cnf.dilation,
                groups=cnf.expanded_channels,
                norm_layer=norm_layer,
                activation_layer=activation_layer,
            )
        )
108
        if cnf.use_se:
109
110
            squeeze_channels = _make_divisible(cnf.expanded_channels // 4, 8)
            layers.append(se_layer(cnf.expanded_channels, squeeze_channels))
111
112

        # project
113
114
115
116
117
        layers.append(
            ConvNormActivation(
                cnf.expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
            )
        )
118
119
120

        self.block = nn.Sequential(*layers)
        self.out_channels = cnf.out_channels
121
        self._is_cn = cnf.stride > 1
122
123
124
125
126
127
128
129
130
131

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result += input
        return result


class MobileNetV3(nn.Module):
    def __init__(
132
133
134
135
136
137
        self,
        inverted_residual_setting: List[InvertedResidualConfig],
        last_channel: int,
        num_classes: int = 1000,
        block: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
138
        dropout: float = 0.2,
139
        **kwargs: Any,
140
141
142
143
144
145
146
147
148
149
    ) -> None:
        """
        MobileNet V3 main class

        Args:
            inverted_residual_setting (List[InvertedResidualConfig]): Network structure
            last_channel (int): The number of channels on the penultimate layer
            num_classes (int): Number of classes
            block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for mobilenet
            norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
150
            dropout (float): The droupout probability
151
152
153
154
155
        """
        super().__init__()

        if not inverted_residual_setting:
            raise ValueError("The inverted_residual_setting should not be empty")
156
157
158
159
        elif not (
            isinstance(inverted_residual_setting, Sequence)
            and all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])
        ):
160
161
162
163
164
165
166
167
168
169
170
171
            raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")

        if block is None:
            block = InvertedResidual

        if norm_layer is None:
            norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)

        layers: List[nn.Module] = []

        # building first layer
        firstconv_output_channels = inverted_residual_setting[0].input_channels
172
173
174
175
176
177
178
179
180
181
        layers.append(
            ConvNormActivation(
                3,
                firstconv_output_channels,
                kernel_size=3,
                stride=2,
                norm_layer=norm_layer,
                activation_layer=nn.Hardswish,
            )
        )
182
183
184
185
186
187
188
189

        # building inverted residual blocks
        for cnf in inverted_residual_setting:
            layers.append(block(cnf, norm_layer))

        # building last several layers
        lastconv_input_channels = inverted_residual_setting[-1].out_channels
        lastconv_output_channels = 6 * lastconv_input_channels
190
191
192
193
194
195
196
197
198
        layers.append(
            ConvNormActivation(
                lastconv_input_channels,
                lastconv_output_channels,
                kernel_size=1,
                norm_layer=norm_layer,
                activation_layer=nn.Hardswish,
            )
        )
199
200
201
202
203
204

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Sequential(
            nn.Linear(lastconv_output_channels, last_channel),
            nn.Hardswish(inplace=True),
205
            nn.Dropout(p=dropout, inplace=True),
206
207
208
209
210
            nn.Linear(last_channel, num_classes),
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
211
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)

        x = self.classifier(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


235
236
237
def _mobilenet_v3_conf(
    arch: str, width_mult: float = 1.0, reduced_tail: bool = False, dilated: bool = False, **kwargs: Any
):
238
239
    reduce_divider = 2 if reduced_tail else 1
    dilation = 2 if dilated else 1
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

    bneck_conf = partial(InvertedResidualConfig, width_mult=width_mult)
    adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_mult=width_mult)

    if arch == "mobilenet_v3_large":
        inverted_residual_setting = [
            bneck_conf(16, 3, 16, 16, False, "RE", 1, 1),
            bneck_conf(16, 3, 64, 24, False, "RE", 2, 1),  # C1
            bneck_conf(24, 3, 72, 24, False, "RE", 1, 1),
            bneck_conf(24, 5, 72, 40, True, "RE", 2, 1),  # C2
            bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
            bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
            bneck_conf(40, 3, 240, 80, False, "HS", 2, 1),  # C3
            bneck_conf(80, 3, 200, 80, False, "HS", 1, 1),
            bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
            bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
            bneck_conf(80, 3, 480, 112, True, "HS", 1, 1),
            bneck_conf(112, 3, 672, 112, True, "HS", 1, 1),
            bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2, dilation),  # C4
            bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
            bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
        ]
        last_channel = adjust_channels(1280 // reduce_divider)  # C5
    elif arch == "mobilenet_v3_small":
        inverted_residual_setting = [
            bneck_conf(16, 3, 16, 16, True, "RE", 2, 1),  # C1
            bneck_conf(16, 3, 72, 24, False, "RE", 2, 1),  # C2
            bneck_conf(24, 3, 88, 24, False, "RE", 1, 1),
            bneck_conf(24, 5, 96, 40, True, "HS", 2, 1),  # C3
            bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
            bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
            bneck_conf(40, 5, 120, 48, True, "HS", 1, 1),
            bneck_conf(48, 5, 144, 48, True, "HS", 1, 1),
            bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2, dilation),  # C4
            bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
            bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
        ]
        last_channel = adjust_channels(1024 // reduce_divider)  # C5
    else:
        raise ValueError("Unsupported model type {}".format(arch))

    return inverted_residual_setting, last_channel


284
def _mobilenet_v3(
285
286
287
288
289
    arch: str,
    inverted_residual_setting: List[InvertedResidualConfig],
    last_channel: int,
    pretrained: bool,
    progress: bool,
290
    **kwargs: Any,
291
292
293
294
295
296
297
298
299
300
):
    model = MobileNetV3(inverted_residual_setting, last_channel, **kwargs)
    if pretrained:
        if model_urls.get(arch, None) is None:
            raise ValueError("No checkpoint is available for model type {}".format(arch))
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model


301
def mobilenet_v3_large(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> MobileNetV3:
302
303
304
305
306
307
308
309
    """
    Constructs a large MobileNetV3 architecture from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
310
    arch = "mobilenet_v3_large"
311
    inverted_residual_setting, last_channel = _mobilenet_v3_conf(arch, **kwargs)
312
    return _mobilenet_v3(arch, inverted_residual_setting, last_channel, pretrained, progress, **kwargs)
313
314


315
def mobilenet_v3_small(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> MobileNetV3:
316
317
318
319
320
321
322
323
    """
    Constructs a small MobileNetV3 architecture from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
324
    arch = "mobilenet_v3_small"
325
    inverted_residual_setting, last_channel = _mobilenet_v3_conf(arch, **kwargs)
326
    return _mobilenet_v3(arch, inverted_residual_setting, last_channel, pretrained, progress, **kwargs)