mobilenetv3.py 11.7 KB
Newer Older
1
import warnings
2
3
4
5
import torch

from functools import partial
from torch import nn, Tensor
6
from typing import Any, Callable, List, Optional, Sequence
7

8
from .._internally_replaced_utils import load_state_dict_from_url
9
10
from ..ops.misc import ConvNormActivation, SqueezeExcitation as SElayer
from ._utils import _make_divisible
11
12
13
14
15
16
17


__all__ = ["MobileNetV3", "mobilenet_v3_large", "mobilenet_v3_small"]


model_urls = {
    "mobilenet_v3_large": "https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth",
18
    "mobilenet_v3_small": "https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth",
19
20
21
}


22
23
24
class SqueezeExcitation(SElayer):
    """DEPRECATED
    """
25
26
    def __init__(self, input_channels: int, squeeze_factor: int = 4):
        squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8)
27
28
29
30
        super().__init__(input_channels, squeeze_channels, scale_activation=nn.Hardsigmoid)
        self.relu = self.activation
        delattr(self, 'activation')
        warnings.warn(
31
32
            "This SqueezeExcitation class is deprecated and will be removed in future versions. "
            "Use torchvision.ops.misc.SqueezeExcitation instead.", FutureWarning)
33
34
35


class InvertedResidualConfig:
36
    # Stores information listed at Tables 1 and 2 of the MobileNetV3 paper
37
    def __init__(self, input_channels: int, kernel: int, expanded_channels: int, out_channels: int, use_se: bool,
38
                 activation: str, stride: int, dilation: int, width_mult: float):
39
40
41
42
43
44
45
        self.input_channels = self.adjust_channels(input_channels, width_mult)
        self.kernel = kernel
        self.expanded_channels = self.adjust_channels(expanded_channels, width_mult)
        self.out_channels = self.adjust_channels(out_channels, width_mult)
        self.use_se = use_se
        self.use_hs = activation == "HS"
        self.stride = stride
46
        self.dilation = dilation
47
48
49
50
51
52
53

    @staticmethod
    def adjust_channels(channels: int, width_mult: float):
        return _make_divisible(channels * width_mult, 8)


class InvertedResidual(nn.Module):
54
    # Implemented as described at section 5 of MobileNetV3 paper
55
    def __init__(self, cnf: InvertedResidualConfig, norm_layer: Callable[..., nn.Module],
56
                 se_layer: Callable[..., nn.Module] = partial(SElayer, scale_activation=nn.Hardsigmoid)):
57
58
59
60
61
62
63
64
65
66
67
        super().__init__()
        if not (1 <= cnf.stride <= 2):
            raise ValueError('illegal stride value')

        self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels

        layers: List[nn.Module] = []
        activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU

        # expand
        if cnf.expanded_channels != cnf.input_channels:
68
69
            layers.append(ConvNormActivation(cnf.input_channels, cnf.expanded_channels, kernel_size=1,
                                             norm_layer=norm_layer, activation_layer=activation_layer))
70
71

        # depthwise
72
        stride = 1 if cnf.dilation > 1 else cnf.stride
73
74
75
        layers.append(ConvNormActivation(cnf.expanded_channels, cnf.expanded_channels, kernel_size=cnf.kernel,
                                         stride=stride, dilation=cnf.dilation, groups=cnf.expanded_channels,
                                         norm_layer=norm_layer, activation_layer=activation_layer))
76
        if cnf.use_se:
77
78
            squeeze_channels = _make_divisible(cnf.expanded_channels // 4, 8)
            layers.append(se_layer(cnf.expanded_channels, squeeze_channels))
79
80

        # project
81
82
        layers.append(ConvNormActivation(cnf.expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer,
                                         activation_layer=None))
83
84
85

        self.block = nn.Sequential(*layers)
        self.out_channels = cnf.out_channels
86
        self._is_cn = cnf.stride > 1
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result += input
        return result


class MobileNetV3(nn.Module):

    def __init__(
            self,
            inverted_residual_setting: List[InvertedResidualConfig],
            last_channel: int,
            num_classes: int = 1000,
            block: Optional[Callable[..., nn.Module]] = None,
103
104
            norm_layer: Optional[Callable[..., nn.Module]] = None,
            **kwargs: Any
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    ) -> None:
        """
        MobileNet V3 main class

        Args:
            inverted_residual_setting (List[InvertedResidualConfig]): Network structure
            last_channel (int): The number of channels on the penultimate layer
            num_classes (int): Number of classes
            block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for mobilenet
            norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
        """
        super().__init__()

        if not inverted_residual_setting:
            raise ValueError("The inverted_residual_setting should not be empty")
        elif not (isinstance(inverted_residual_setting, Sequence) and
                  all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])):
            raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")

        if block is None:
            block = InvertedResidual

        if norm_layer is None:
            norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)

        layers: List[nn.Module] = []

        # building first layer
        firstconv_output_channels = inverted_residual_setting[0].input_channels
134
135
        layers.append(ConvNormActivation(3, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer,
                                         activation_layer=nn.Hardswish))
136
137
138
139
140
141
142
143

        # building inverted residual blocks
        for cnf in inverted_residual_setting:
            layers.append(block(cnf, norm_layer))

        # building last several layers
        lastconv_input_channels = inverted_residual_setting[-1].out_channels
        lastconv_output_channels = 6 * lastconv_input_channels
144
145
        layers.append(ConvNormActivation(lastconv_input_channels, lastconv_output_channels, kernel_size=1,
                                         norm_layer=norm_layer, activation_layer=nn.Hardswish))
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Sequential(
            nn.Linear(lastconv_output_channels, last_channel),
            nn.Hardswish(inplace=True),
            nn.Dropout(p=0.2, inplace=True),
            nn.Linear(last_channel, num_classes),
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)

        x = self.classifier(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


182
183
184
185
def _mobilenet_v3_conf(arch: str, width_mult: float = 1.0, reduced_tail: bool = False, dilated: bool = False,
                       **kwargs: Any):
    reduce_divider = 2 if reduced_tail else 1
    dilation = 2 if dilated else 1
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    bneck_conf = partial(InvertedResidualConfig, width_mult=width_mult)
    adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_mult=width_mult)

    if arch == "mobilenet_v3_large":
        inverted_residual_setting = [
            bneck_conf(16, 3, 16, 16, False, "RE", 1, 1),
            bneck_conf(16, 3, 64, 24, False, "RE", 2, 1),  # C1
            bneck_conf(24, 3, 72, 24, False, "RE", 1, 1),
            bneck_conf(24, 5, 72, 40, True, "RE", 2, 1),  # C2
            bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
            bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
            bneck_conf(40, 3, 240, 80, False, "HS", 2, 1),  # C3
            bneck_conf(80, 3, 200, 80, False, "HS", 1, 1),
            bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
            bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
            bneck_conf(80, 3, 480, 112, True, "HS", 1, 1),
            bneck_conf(112, 3, 672, 112, True, "HS", 1, 1),
            bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2, dilation),  # C4
            bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
            bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
        ]
        last_channel = adjust_channels(1280 // reduce_divider)  # C5
    elif arch == "mobilenet_v3_small":
        inverted_residual_setting = [
            bneck_conf(16, 3, 16, 16, True, "RE", 2, 1),  # C1
            bneck_conf(16, 3, 72, 24, False, "RE", 2, 1),  # C2
            bneck_conf(24, 3, 88, 24, False, "RE", 1, 1),
            bneck_conf(24, 5, 96, 40, True, "HS", 2, 1),  # C3
            bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
            bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
            bneck_conf(40, 5, 120, 48, True, "HS", 1, 1),
            bneck_conf(48, 5, 144, 48, True, "HS", 1, 1),
            bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2, dilation),  # C4
            bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
            bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
        ]
        last_channel = adjust_channels(1024 // reduce_divider)  # C5
    else:
        raise ValueError("Unsupported model type {}".format(arch))

    return inverted_residual_setting, last_channel


def _mobilenet_v3_model(
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    arch: str,
    inverted_residual_setting: List[InvertedResidualConfig],
    last_channel: int,
    pretrained: bool,
    progress: bool,
    **kwargs: Any
):
    model = MobileNetV3(inverted_residual_setting, last_channel, **kwargs)
    if pretrained:
        if model_urls.get(arch, None) is None:
            raise ValueError("No checkpoint is available for model type {}".format(arch))
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model


247
def mobilenet_v3_large(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> MobileNetV3:
248
249
250
251
252
253
254
255
    """
    Constructs a large MobileNetV3 architecture from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
256
    arch = "mobilenet_v3_large"
257
    inverted_residual_setting, last_channel = _mobilenet_v3_conf(arch, **kwargs)
258
    return _mobilenet_v3_model(arch, inverted_residual_setting, last_channel, pretrained, progress, **kwargs)
259
260


261
def mobilenet_v3_small(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> MobileNetV3:
262
263
264
265
266
267
268
269
    """
    Constructs a small MobileNetV3 architecture from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
270
    arch = "mobilenet_v3_small"
271
    inverted_residual_setting, last_channel = _mobilenet_v3_conf(arch, **kwargs)
272
    return _mobilenet_v3_model(arch, inverted_residual_setting, last_channel, pretrained, progress, **kwargs)