mobilenetv3.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch

from functools import partial
from torch import nn, Tensor
from torch.nn import functional as F
from typing import Any, Callable, List, Optional, Sequence

from torchvision.models.utils import load_state_dict_from_url
from torchvision.models.mobilenetv2 import _make_divisible, ConvBNActivation


__all__ = ["MobileNetV3", "mobilenet_v3_large", "mobilenet_v3_small"]


model_urls = {
    "mobilenet_v3_large": "https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth",
    "mobilenet_v3_small": None,
}


class SqueezeExcitation(nn.Module):

    def __init__(self, input_channels: int, squeeze_factor: int = 4):
        super().__init__()
        squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8)
        self.fc1 = nn.Conv2d(input_channels, squeeze_channels, 1)
        self.fc2 = nn.Conv2d(squeeze_channels, input_channels, 1)

    def forward(self, input: Tensor) -> Tensor:
        scale = F.adaptive_avg_pool2d(input, 1)
        scale = self.fc1(scale)
        scale = F.relu(scale, inplace=True)
        scale = self.fc2(scale)
        scale = F.hardsigmoid(scale, inplace=True)
        return scale * input


class InvertedResidualConfig:

    def __init__(self, input_channels: int, kernel: int, expanded_channels: int, out_channels: int, use_se: bool,
                 activation: str, stride: int, width_mult: float):
        self.input_channels = self.adjust_channels(input_channels, width_mult)
        self.kernel = kernel
        self.expanded_channels = self.adjust_channels(expanded_channels, width_mult)
        self.out_channels = self.adjust_channels(out_channels, width_mult)
        self.use_se = use_se
        self.use_hs = activation == "HS"
        self.stride = stride

    @staticmethod
    def adjust_channels(channels: int, width_mult: float):
        return _make_divisible(channels * width_mult, 8)


class InvertedResidual(nn.Module):

    def __init__(self, cnf: InvertedResidualConfig, norm_layer: Callable[..., nn.Module]):
        super().__init__()
        if not (1 <= cnf.stride <= 2):
            raise ValueError('illegal stride value')

        self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels

        layers: List[nn.Module] = []
        activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU

        # expand
        if cnf.expanded_channels != cnf.input_channels:
            layers.append(ConvBNActivation(cnf.input_channels, cnf.expanded_channels, kernel_size=1,
                                           norm_layer=norm_layer, activation_layer=activation_layer))

        # depthwise
        layers.append(ConvBNActivation(cnf.expanded_channels, cnf.expanded_channels, kernel_size=cnf.kernel,
                                       stride=cnf.stride, groups=cnf.expanded_channels, norm_layer=norm_layer,
                                       activation_layer=activation_layer))
        if cnf.use_se:
            layers.append(SqueezeExcitation(cnf.expanded_channels))

        # project
        layers.append(ConvBNActivation(cnf.expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer,
81
                                       activation_layer=nn.Identity))
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

        self.block = nn.Sequential(*layers)
        self.out_channels = cnf.out_channels
        self.is_strided = cnf.stride > 1

    def forward(self, input: Tensor) -> Tensor:
        result = self.block(input)
        if self.use_res_connect:
            result += input
        return result


class MobileNetV3(nn.Module):

    def __init__(
            self,
            inverted_residual_setting: List[InvertedResidualConfig],
            last_channel: int,
            num_classes: int = 1000,
            block: Optional[Callable[..., nn.Module]] = None,
            norm_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:
        """
        MobileNet V3 main class

        Args:
            inverted_residual_setting (List[InvertedResidualConfig]): Network structure
            last_channel (int): The number of channels on the penultimate layer
            num_classes (int): Number of classes
            block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for mobilenet
            norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
        """
        super().__init__()

        if not inverted_residual_setting:
            raise ValueError("The inverted_residual_setting should not be empty")
        elif not (isinstance(inverted_residual_setting, Sequence) and
                  all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])):
            raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")

        if block is None:
            block = InvertedResidual

        if norm_layer is None:
            norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)

        layers: List[nn.Module] = []

        # building first layer
        firstconv_output_channels = inverted_residual_setting[0].input_channels
        layers.append(ConvBNActivation(3, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer,
                                       activation_layer=nn.Hardswish))

        # building inverted residual blocks
        for cnf in inverted_residual_setting:
            layers.append(block(cnf, norm_layer))

        # building last several layers
        lastconv_input_channels = inverted_residual_setting[-1].out_channels
        lastconv_output_channels = 6 * lastconv_input_channels
        layers.append(ConvBNActivation(lastconv_input_channels, lastconv_output_channels, kernel_size=1,
                                       norm_layer=norm_layer, activation_layer=nn.Hardswish))

        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Sequential(
            nn.Linear(lastconv_output_channels, last_channel),
            nn.Hardswish(inplace=True),
            nn.Dropout(p=0.2, inplace=True),
            nn.Linear(last_channel, num_classes),
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)

        x = self.classifier(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def _mobilenet_v3(
    arch: str,
    inverted_residual_setting: List[InvertedResidualConfig],
    last_channel: int,
    pretrained: bool,
    progress: bool,
    **kwargs: Any
):
    model = MobileNetV3(inverted_residual_setting, last_channel, **kwargs)
    if pretrained:
        if model_urls.get(arch, None) is None:
            raise ValueError("No checkpoint is available for model type {}".format(arch))
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model


def mobilenet_v3_large(pretrained: bool = False, progress: bool = True, reduced_tail: bool = False,
                       **kwargs: Any) -> MobileNetV3:
    """
    Constructs a large MobileNetV3 architecture from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
        reduced_tail (bool): If True, reduces the channel counts of all feature layers
            between C4 and C5 by 2. It is used to reduce the channel redundancy in the
            backbone for Detection and Segmentation.
    """
    width_mult = 1.0
    bneck_conf = partial(InvertedResidualConfig, width_mult=width_mult)
    adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_mult=width_mult)

    reduce_divider = 2 if reduced_tail else 1

    inverted_residual_setting = [
        bneck_conf(16, 3, 16, 16, False, "RE", 1),
        bneck_conf(16, 3, 64, 24, False, "RE", 2),  # C1
        bneck_conf(24, 3, 72, 24, False, "RE", 1),
        bneck_conf(24, 5, 72, 40, True, "RE", 2),  # C2
        bneck_conf(40, 5, 120, 40, True, "RE", 1),
        bneck_conf(40, 5, 120, 40, True, "RE", 1),
        bneck_conf(40, 3, 240, 80, False, "HS", 2),  # C3
        bneck_conf(80, 3, 200, 80, False, "HS", 1),
        bneck_conf(80, 3, 184, 80, False, "HS", 1),
        bneck_conf(80, 3, 184, 80, False, "HS", 1),
        bneck_conf(80, 3, 480, 112, True, "HS", 1),
        bneck_conf(112, 3, 672, 112, True, "HS", 1),
        bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2),  # C4
        bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1),
        bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1),
    ]
    last_channel = adjust_channels(1280 // reduce_divider)  # C5

    return _mobilenet_v3("mobilenet_v3_large", inverted_residual_setting, last_channel, pretrained, progress, **kwargs)


def mobilenet_v3_small(pretrained: bool = False, progress: bool = True, reduced_tail: bool = False,
                       **kwargs: Any) -> MobileNetV3:
    """
    Constructs a small MobileNetV3 architecture from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
        reduced_tail (bool): If True, reduces the channel counts of all feature layers
            between C4 and C5 by 2. It is used to reduce the channel redundancy in the
            backbone for Detection and Segmentation.
    """
    width_mult = 1.0
    bneck_conf = partial(InvertedResidualConfig, width_mult=width_mult)
    adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_mult=width_mult)

    reduce_divider = 2 if reduced_tail else 1

    inverted_residual_setting = [
        bneck_conf(16, 3, 16, 16, True, "RE", 2),  # C1
        bneck_conf(16, 3, 72, 24, False, "RE", 2),  # C2
        bneck_conf(24, 3, 88, 24, False, "RE", 1),
        bneck_conf(24, 5, 96, 40, True, "HS", 2),  # C3
        bneck_conf(40, 5, 240, 40, True, "HS", 1),
        bneck_conf(40, 5, 240, 40, True, "HS", 1),
        bneck_conf(40, 5, 120, 48, True, "HS", 1),
        bneck_conf(48, 5, 144, 48, True, "HS", 1),
        bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2),  # C4
        bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1),
        bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1),
    ]
    last_channel = adjust_channels(1024 // reduce_divider)  # C5

    return _mobilenet_v3("mobilenet_v3_small", inverted_residual_setting, last_channel, pretrained, progress, **kwargs)