functional_impl.py 38.7 KB
Newer Older
dhthompson's avatar
dhthompson committed
1
2
"""Test definition common to CPU and CUDA"""
import itertools
3
import math
dhthompson's avatar
dhthompson committed
4
5
6
import warnings

import numpy as np
7
8
import torch
import torchaudio.functional as F
9
from parameterized import parameterized
10
from scipy import signal
11
from torchaudio_unittest.common_utils import (
12
    beamform_utils,
13
14
    get_sinusoid,
    get_whitenoise,
15
    nested_params,
16
    rnnt_utils,
17
    TestBaseMixin,
18
)
19
20


dhthompson's avatar
dhthompson committed
21
class Functional(TestBaseMixin):
22
23
24
    def _test_resample_waveform_accuracy(
        self, up_scale_factor=None, down_scale_factor=None, resampling_method="sinc_interpolation", atol=1e-1, rtol=1e-4
    ):
25
26
27
28
29
30
        # resample the signal and compare it to the ground truth
        n_to_trim = 20
        sample_rate = 1000
        new_sample_rate = sample_rate

        if up_scale_factor is not None:
31
            new_sample_rate = int(new_sample_rate * up_scale_factor)
32
33

        if down_scale_factor is not None:
34
            new_sample_rate = int(new_sample_rate / down_scale_factor)
35
36
37
38
39

        duration = 5  # seconds
        original_timestamps = torch.arange(0, duration, 1.0 / sample_rate)

        sound = 123 * torch.cos(2 * math.pi * 3 * original_timestamps).unsqueeze(0)
40
        estimate = F.resample(sound, sample_rate, new_sample_rate, resampling_method=resampling_method).squeeze()
41

42
        new_timestamps = torch.arange(0, duration, 1.0 / new_sample_rate)[: estimate.size(0)]
43
44
45
46
47
48
49
50
        ground_truth = 123 * torch.cos(2 * math.pi * 3 * new_timestamps)

        # trim the first/last n samples as these points have boundary effects
        ground_truth = ground_truth[..., n_to_trim:-n_to_trim]
        estimate = estimate[..., n_to_trim:-n_to_trim]

        self.assertEqual(estimate, ground_truth, atol=atol, rtol=rtol)

51
    def _test_costs_and_gradients(self, data, ref_costs, ref_gradients, atol=1e-6, rtol=1e-2):
52
53
        logits_shape = data["logits"].shape
        costs, gradients = rnnt_utils.compute_with_pytorch_transducer(data=data)
54

55
56
57
58
        self.assertEqual(costs, ref_costs, atol=atol, rtol=rtol)
        self.assertEqual(logits_shape, gradients.shape)
        self.assertEqual(gradients, ref_gradients, atol=atol, rtol=rtol)

59
    def test_lfilter_simple(self):
60
61
62
63
64
65
66
67
68
69
70
71
72
        """
        Create a very basic signal,
        Then make a simple 4th order delay
        The output should be same as the input but shifted
        """

        waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device)
        b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
        output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs)

        self.assertEqual(output_waveform[:, 3:], waveform[:, 0:-3], atol=1e-5, rtol=1e-5)

73
    def test_lfilter_clamp(self):
74
75
76
77
78
79
80
        input_signal = torch.ones(1, 44100 * 1, dtype=self.dtype, device=self.device)
        b_coeffs = torch.tensor([1, 0], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, -0.95], dtype=self.dtype, device=self.device)
        output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=True)
        assert output_signal.max() <= 1
        output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=False)
        assert output_signal.max() > 1
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    @parameterized.expand(
        [
            ((44100,), (4,), (44100,)),
            (
                (3, 44100),
                (4,),
                (
                    3,
                    44100,
                ),
            ),
            (
                (2, 3, 44100),
                (4,),
                (
                    2,
                    3,
                    44100,
                ),
            ),
            (
                (1, 2, 3, 44100),
                (4,),
                (
                    1,
                    2,
                    3,
                    44100,
                ),
            ),
            ((44100,), (2, 4), (2, 44100)),
            ((3, 44100), (1, 4), (3, 1, 44100)),
            ((1, 2, 44100), (3, 4), (1, 2, 3, 44100)),
        ]
    )
117
118
119
120
    def test_lfilter_shape(self, input_shape, coeff_shape, target_shape):
        waveform = torch.rand(*input_shape, dtype=self.dtype, device=self.device)
        b_coeffs = torch.rand(*coeff_shape, dtype=self.dtype, device=self.device)
        a_coeffs = torch.rand(*coeff_shape, dtype=self.dtype, device=self.device)
121
        output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs, batching=False)
122
123
        assert input_shape == waveform.size()
        assert target_shape == output_waveform.size()
124

125
    def test_lfilter_9th_order_filter_stability(self):
126
127
128
129
130
131
132
133
134
        """
        Validate the precision of lfilter against reference scipy implementation when using high order filter.
        The reference implementation use cascaded second-order filters so is more numerically accurate.
        """
        # create an impulse signal
        x = torch.zeros(1024, dtype=self.dtype, device=self.device)
        x[0] = 1

        # get target impulse response
135
        sos = signal.butter(9, 850, "hp", fs=22050, output="sos")
136
137
138
        y = torch.from_numpy(signal.sosfilt(sos, x.cpu().numpy())).to(self.dtype).to(self.device)

        # get lfilter coefficients
139
140
        b, a = signal.butter(9, 850, "hp", fs=22050, output="ba")
        b, a = torch.from_numpy(b).to(self.dtype).to(self.device), torch.from_numpy(a).to(self.dtype).to(self.device)
141
142
143
144
145

        # predict impulse response
        yhat = F.lfilter(x, a, b, False)
        self.assertEqual(yhat, y, atol=1e-4, rtol=1e-5)

146
147
148
149
150
    def test_filtfilt_simple(self):
        """
        Check that, for an arbitrary signal, applying filtfilt with filter coefficients
        corresponding to a pure delay filter imparts no time delay.
        """
151
        waveform = get_whitenoise(sample_rate=8000, n_channels=2, dtype=self.dtype).to(device=self.device)
152
153
        b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
154
        padded_waveform = torch.cat((waveform, torch.zeros(2, 3, dtype=self.dtype, device=self.device)), axis=1)
155
156
157
158
159
160
161
162
163
164
165
166
167
        output_waveform = F.filtfilt(padded_waveform, a_coeffs, b_coeffs)

        self.assertEqual(output_waveform, padded_waveform, atol=1e-5, rtol=1e-5)

    def test_filtfilt_filter_sinusoid(self):
        """
        Check that, for a signal comprising two sinusoids, applying filtfilt
        with appropriate filter coefficients correctly removes the higher-frequency
        sinusoid while imparting no time delay.
        """
        T = 1.0
        samples = 1000

168
169
170
        waveform_k0 = get_sinusoid(frequency=5, sample_rate=samples // T, dtype=self.dtype, device=self.device).squeeze(
            0
        )
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        waveform_k1 = get_sinusoid(
            frequency=200,
            sample_rate=samples // T,
            dtype=self.dtype,
            device=self.device,
        ).squeeze(0)
        waveform = waveform_k0 + waveform_k1

        # Transfer function numerator and denominator polynomial coefficients
        # corresponding to 8th-order Butterworth filter with 100-cycle/T cutoff.
        # Generated with
        # >>> from scipy import signal
        # >>> b_coeffs, a_coeffs = signal.butter(8, 0.2)
        b_coeffs = torch.tensor(
            [
                2.39596441e-05,
                1.91677153e-04,
                6.70870035e-04,
                1.34174007e-03,
                1.67717509e-03,
                1.34174007e-03,
                6.70870035e-04,
                1.91677153e-04,
                2.39596441e-05,
            ],
            dtype=self.dtype,
            device=self.device,
        )
        a_coeffs = torch.tensor(
            [
                1.0,
                -4.78451489,
                10.44504107,
                -13.45771989,
                11.12933104,
                -6.0252604,
                2.0792738,
                -0.41721716,
                0.0372001,
            ],
            dtype=self.dtype,
            device=self.device,
        )

        # Extend waveform in each direction, preserving periodicity.
        padded_waveform = torch.cat((waveform[:-1], waveform, waveform[1:]))

        output_waveform = F.filtfilt(padded_waveform, a_coeffs, b_coeffs)

        # Remove padding from output waveform; confirm that result
        # closely matches waveform_k0.
        self.assertEqual(
223
            output_waveform[samples - 1 : 2 * samples - 1],
224
225
226
227
228
            waveform_k0,
            atol=1e-3,
            rtol=1e-3,
        )

229
    @parameterized.expand([(0.0,), (1.0,), (2.0,), (3.0,)])
Caroline Chen's avatar
Caroline Chen committed
230
    def test_spectrogram_grad_at_zero(self, power):
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        """The gradient of power spectrogram should not be nan but zero near x=0

        https://github.com/pytorch/audio/issues/993
        """
        x = torch.zeros(1, 22050, requires_grad=True)
        spec = F.spectrogram(
            x,
            pad=0,
            window=None,
            n_fft=2048,
            hop_length=None,
            win_length=None,
            power=power,
            normalized=False,
        )
        spec.sum().backward()
        assert not x.grad.isnan().sum()
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    @parameterized.expand(
        [
            (1024,),
            (2048,),
            (4096,),
        ]
    )
    def test_spectrogram_normalization_hann_window(self, nfft):
        """This test assumes that currently, torch.stft and the existing math behind spectrogram are correct.
        The test is checking that in relation to one another, the normalization factors correctly align based on
        mathematical prediction. Using spec_false as a base, which has no normalization factors, we check to see that
        turning normalized as ``True`` or ``"window"`` will have a normalization factor of the sum of squares of hann
        window, which is calculated to be sqrt(3 * nfft / 8).
        Next, when ``normalized`` is ``"frame_length"``, we are using the normalization in torch.stft, therefore we
        assume that it is correctly normalized by a factor of sqrt(nfft). This test does not test the accuracy of
        spectrogram, but is testing the relative factors of normalization and that they align upon the frame_length
        and chosen normalize parameter.
        https://github.com/pytorch/pytorch/issues/81428
        """
        x = torch.rand(1, 22050)
        spec_false = F.spectrogram(
            x,
            pad=0,
            window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
            n_fft=nfft,
            hop_length=4,
            win_length=nfft,
            power=None,
            normalized=False,
        )

        spec_true = F.spectrogram(
            x,
            pad=0,
            window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
            n_fft=nfft,
            hop_length=4,
            win_length=nfft,
            power=None,
            normalized=True,
        )

        spec_window = F.spectrogram(
            x,
            pad=0,
            window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
            n_fft=nfft,
            hop_length=4,
            win_length=nfft,
            power=None,
            normalized="window",
        )

        spec_frame = F.spectrogram(
            x,
            pad=0,
            window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
            n_fft=nfft,
            hop_length=4,
            win_length=nfft,
            power=None,
            normalized="frame_length",
        )

        norm_factor = math.sqrt(3 * nfft / 8)
        frame_norm_factor = math.sqrt(nfft)

        self.assertEqual(spec_true, spec_window)
        self.assertEqual(spec_true, spec_false / norm_factor)
        self.assertEqual(spec_frame, spec_false / frame_norm_factor)

dhthompson's avatar
dhthompson committed
320
    def test_compute_deltas_one_channel(self):
321
322
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0]]], dtype=self.dtype, device=self.device)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]], dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
323
324
325
326
        computed = F.compute_deltas(specgram, win_length=3)
        self.assertEqual(computed, expected)

    def test_compute_deltas_two_channels(self):
327
328
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]]], dtype=self.dtype, device=self.device)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5], [0.5, 1.0, 1.0, 0.5]]], dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
329
330
331
332
333
334
        computed = F.compute_deltas(specgram, win_length=3)
        self.assertEqual(computed, expected)

    @parameterized.expand([(100,), (440,)])
    def test_detect_pitch_frequency_pitch(self, frequency):
        sample_rate = 44100
335
        test_sine_waveform = get_sinusoid(frequency=frequency, sample_rate=sample_rate, duration=5)
dhthompson's avatar
dhthompson committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349

        freq = F.detect_pitch_frequency(test_sine_waveform, sample_rate)

        threshold = 1
        s = ((freq - frequency).abs() > threshold).sum()
        self.assertFalse(s)

    @parameterized.expand([([100, 100],), ([2, 100, 100],), ([2, 2, 100, 100],)])
    def test_amplitude_to_DB_reversible(self, shape):
        """Round trip between amplitude and db should return the original for various shape

        This implicitly also tests `DB_to_amplitude`.

        """
350
351
        amplitude_mult = 20.0
        power_mult = 10.0
dhthompson's avatar
dhthompson committed
352
353
354
355
        amin = 1e-10
        ref = 1.0
        db_mult = math.log10(max(amin, ref))

356
        spec = torch.rand(*shape, dtype=self.dtype, device=self.device) * 200
dhthompson's avatar
dhthompson committed
357
358
359
360
361
362
363
364
365

        # Spectrogram amplitude -> DB -> amplitude
        db = F.amplitude_to_DB(spec, amplitude_mult, amin, db_mult, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, 0.5)

        self.assertEqual(x2, spec, atol=5e-5, rtol=1e-5)

        # Spectrogram power -> DB -> power
        db = F.amplitude_to_DB(spec, power_mult, amin, db_mult, top_db=None)
366
        x2 = F.DB_to_amplitude(db, ref, 1.0)
dhthompson's avatar
dhthompson committed
367
368
369
370
371
372

        self.assertEqual(x2, spec)

    @parameterized.expand([([100, 100],), ([2, 100, 100],), ([2, 2, 100, 100],)])
    def test_amplitude_to_DB_top_db_clamp(self, shape):
        """Ensure values are properly clamped when `top_db` is supplied."""
373
        amplitude_mult = 20.0
dhthompson's avatar
dhthompson committed
374
375
376
        amin = 1e-10
        ref = 1.0
        db_mult = math.log10(max(amin, ref))
377
        top_db = 40.0
dhthompson's avatar
dhthompson committed
378
379
380
381
382

        # A random tensor is used for increased entropy, but the max and min for
        # each spectrogram still need to be predictable. The max determines the
        # decibel cutoff, and the distance from the min must be large enough
        # that it triggers a clamp.
383
        spec = torch.rand(*shape, dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
384
385
386
387
388
389
        # Ensure each spectrogram has a min of 0 and a max of 1.
        spec -= spec.amin([-2, -1])[..., None, None]
        spec /= spec.amax([-2, -1])[..., None, None]
        # Expand the range to (0, 200) - wide enough to properly test clamping.
        spec *= 200

390
        decibels = F.amplitude_to_DB(spec, amplitude_mult, amin, db_mult, top_db=top_db)
dhthompson's avatar
dhthompson committed
391
392
        # Ensure the clamp was applied
        below_limit = decibels < 6.0205
393
394
        assert not below_limit.any(), "{} decibel values were below the expected cutoff:\n{}".format(
            below_limit.sum().item(), decibels
dhthompson's avatar
dhthompson committed
395
396
397
        )
        # Ensure it didn't over-clamp
        close_to_limit = decibels < 6.0207
398
        assert close_to_limit.any(), f"No values were close to the limit. Did it over-clamp?\n{decibels}"
dhthompson's avatar
dhthompson committed
399

400
401
402
403
    @parameterized.expand(
        list(itertools.product([(2, 1025, 400), (1, 201, 100)], [100], [0.0, 30.0], [1, 2], [0.33, 1.0]))
    )
    def test_mask_along_axis(self, shape, mask_param, mask_value, axis, p):
404
        specgram = torch.randn(*shape, dtype=self.dtype, device=self.device)
405
406
407
408
409

        if p != 1.0:
            mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis, p=p)
        else:
            mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)
dhthompson's avatar
dhthompson committed
410
411
412
413
414

        other_axis = 1 if axis == 2 else 2

        masked_columns = (mask_specgram == mask_value).sum(other_axis)
        num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
415
        num_masked_columns = torch.div(num_masked_columns, mask_specgram.size(0), rounding_mode="floor")
dhthompson's avatar
dhthompson committed
416

417
418
419
        if p != 1.0:
            mask_param = min(mask_param, int(specgram.shape[axis] * p))

dhthompson's avatar
dhthompson committed
420
421
422
        assert mask_specgram.size() == specgram.size()
        assert num_masked_columns < mask_param

423
424
    @parameterized.expand(list(itertools.product([100], [0.0, 30.0], [2, 3], [0.2, 1.0])))
    def test_mask_along_axis_iid(self, mask_param, mask_value, axis, p):
425
        specgrams = torch.randn(4, 2, 1025, 400, dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
426

427
428
429
430
        if p != 1.0:
            mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis, p=p)
        else:
            mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)
dhthompson's avatar
dhthompson committed
431
432
433
434
435
436

        other_axis = 2 if axis == 3 else 3

        masked_columns = (mask_specgrams == mask_value).sum(other_axis)
        num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)

437
438
439
        if p != 1.0:
            mask_param = min(mask_param, int(specgrams.shape[axis] * p))

dhthompson's avatar
dhthompson committed
440
441
        assert mask_specgrams.size() == specgrams.size()
        assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()
442

443
    @parameterized.expand(list(itertools.product([(2, 1025, 400), (1, 201, 100)], [100], [0.0, 30.0], [1, 2])))
444
445
446
447
448
449
450
451
452
453
454
455
456
    def test_mask_along_axis_preserve(self, shape, mask_param, mask_value, axis):
        """mask_along_axis should not alter original input Tensor

        Test is run 5 times to bound the probability of no masking occurring to 1e-10
        See https://github.com/pytorch/audio/issues/1478
        """
        for _ in range(5):
            specgram = torch.randn(*shape, dtype=self.dtype, device=self.device)
            specgram_copy = specgram.clone()
            F.mask_along_axis(specgram, mask_param, mask_value, axis)

            self.assertEqual(specgram, specgram_copy)

457
    @parameterized.expand(list(itertools.product([100], [0.0, 30.0], [2, 3])))
458
459
460
461
462
463
464
465
466
467
468
469
470
    def test_mask_along_axis_iid_preserve(self, mask_param, mask_value, axis):
        """mask_along_axis_iid should not alter original input Tensor

        Test is run 5 times to bound the probability of no masking occurring to 1e-10
        See https://github.com/pytorch/audio/issues/1478
        """
        for _ in range(5):
            specgrams = torch.randn(4, 2, 1025, 400, dtype=self.dtype, device=self.device)
            specgrams_copy = specgrams.clone()
            F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)

            self.assertEqual(specgrams, specgrams_copy)

471
472
473
474
475
476
477
478
    @parameterized.expand(
        list(
            itertools.product(
                ["sinc_interpolation", "kaiser_window"],
                [16000, 44100],
            )
        )
    )
479
480
481
482
483
484
    def test_resample_identity(self, resampling_method, sample_rate):
        waveform = get_whitenoise(sample_rate=sample_rate, duration=1)

        resampled = F.resample(waveform, sample_rate, sample_rate)
        self.assertEqual(waveform, resampled)

485
486
487
    @parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
    def test_resample_waveform_upsample_size(self, resampling_method):
        sr = 16000
488
489
490
491
        waveform = get_whitenoise(
            sample_rate=sr,
            duration=0.5,
        )
492
493
494
495
496
497
        upsampled = F.resample(waveform, sr, sr * 2, resampling_method=resampling_method)
        assert upsampled.size(-1) == waveform.size(-1) * 2

    @parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
    def test_resample_waveform_downsample_size(self, resampling_method):
        sr = 16000
498
499
500
501
        waveform = get_whitenoise(
            sample_rate=sr,
            duration=0.5,
        )
502
503
504
505
506
507
        downsampled = F.resample(waveform, sr, sr // 2, resampling_method=resampling_method)
        assert downsampled.size(-1) == waveform.size(-1) // 2

    @parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
    def test_resample_waveform_identity_size(self, resampling_method):
        sr = 16000
508
509
510
511
        waveform = get_whitenoise(
            sample_rate=sr,
            duration=0.5,
        )
512
513
514
        resampled = F.resample(waveform, sr, sr, resampling_method=resampling_method)
        assert resampled.size(-1) == waveform.size(-1)

515
516
517
518
519
520
521
522
    @parameterized.expand(
        list(
            itertools.product(
                ["sinc_interpolation", "kaiser_window"],
                list(range(1, 20)),
            )
        )
    )
523
524
525
    def test_resample_waveform_downsample_accuracy(self, resampling_method, i):
        self._test_resample_waveform_accuracy(down_scale_factor=i * 2, resampling_method=resampling_method)

526
527
528
529
530
531
532
533
    @parameterized.expand(
        list(
            itertools.product(
                ["sinc_interpolation", "kaiser_window"],
                list(range(1, 20)),
            )
        )
    )
534
535
536
    def test_resample_waveform_upsample_accuracy(self, resampling_method, i):
        self._test_resample_waveform_accuracy(up_scale_factor=1.0 + i / 20.0, resampling_method=resampling_method)

537
538
    @nested_params([0.5, 1.01, 1.3])
    def test_phase_vocoder_shape(self, rate):
539
540
541
542
543
544
        """Verify the output shape of phase vocoder"""
        hop_length = 256
        num_freq = 1025
        num_frames = 400
        batch_size = 2

545
        spec = torch.randn(batch_size, num_freq, num_frames, dtype=self.complex_dtype, device=self.device)
546

547
        phase_advance = torch.linspace(0, np.pi * hop_length, num_freq, dtype=self.dtype, device=self.device)[..., None]
548
549
550
551
552

        spec_stretch = F.phase_vocoder(spec, rate=rate, phase_advance=phase_advance)

        assert spec.dim() == spec_stretch.dim()
        expected_shape = torch.Size([batch_size, num_freq, int(np.ceil(num_frames / rate))])
553
        output_shape = spec_stretch.shape
554
555
        assert output_shape == expected_shape

yangarbiter's avatar
yangarbiter committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    @parameterized.expand(
        [
            # words
            ["", "", 0],  # equal
            ["abc", "abc", 0],
            ["ᑌᑎIᑕO", "ᑌᑎIᑕO", 0],
            ["abc", "", 3],  # deletion
            ["aa", "aaa", 1],
            ["aaa", "aa", 1],
            ["ᑌᑎI", "ᑌᑎIᑕO", 2],
            ["aaa", "aba", 1],  # substitution
            ["aba", "aaa", 1],
            ["aba", "   ", 3],
            ["abc", "bcd", 2],  # mix deletion and substitution
            ["0ᑌᑎI", "ᑌᑎIᑕO", 3],
            # sentences
            [["hello", "", "Tᕮ᙭T"], ["hello", "", "Tᕮ᙭T"], 0],  # equal
            [[], [], 0],
            [["hello", "world"], ["hello", "world", "!"], 1],  # deletion
            [["hello", "world"], ["world"], 1],
            [["hello", "world"], [], 2],
577
578
579
580
581
582
583
            [
                [
                    "Tᕮ᙭T",
                ],
                ["world"],
                1,
            ],  # substitution
yangarbiter's avatar
yangarbiter committed
584
585
586
587
588
589
590
591
592
593
594
            [["Tᕮ᙭T", "XD"], ["world", "hello"], 2],
            [["", "XD"], ["world", ""], 2],
            ["aba", "   ", 3],
            [["hello", "world"], ["world", "hello", "!"], 2],  # mix deletion and substitution
            [["Tᕮ᙭T", "world", "LOL", "XD"], ["world", "hello", "ʕ•́ᴥ•̀ʔっ"], 3],
        ]
    )
    def test_simple_case_edit_distance(self, seq1, seq2, distance):
        assert F.edit_distance(seq1, seq2) == distance
        assert F.edit_distance(seq2, seq1) == distance

595
596
597
598
599
600
601
602
603
    @nested_params(
        [-4, -2, 0, 2, 4],
    )
    def test_pitch_shift_shape(self, n_steps):
        sample_rate = 16000
        waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device)
        waveform_shift = F.pitch_shift(waveform, sample_rate, n_steps)
        assert waveform.size() == waveform_shift.size()

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    def test_rnnt_loss_basic_backward(self):
        logits, targets, logit_lengths, target_lengths = rnnt_utils.get_basic_data(self.device)
        loss = F.rnnt_loss(logits, targets, logit_lengths, target_lengths)
        loss.backward()

    def test_rnnt_loss_basic_forward_no_grad(self):
        """In early stage, calls to `rnnt_loss` resulted in segmentation fault when
        `logits` have `requires_grad = False`. This test makes sure that this no longer
        occurs and the functional call runs without error.

        See https://github.com/pytorch/audio/pull/1707
        """
        logits, targets, logit_lengths, target_lengths = rnnt_utils.get_basic_data(self.device)
        logits.requires_grad_(False)
        F.rnnt_loss(logits, targets, logit_lengths, target_lengths)

620
621
622
623
624
625
626
627
    @parameterized.expand(
        [
            (rnnt_utils.get_B1_T2_U3_D5_data, torch.float32, 1e-6, 1e-2),
            (rnnt_utils.get_B2_T4_U3_D3_data, torch.float32, 1e-6, 1e-2),
            (rnnt_utils.get_B1_T2_U3_D5_data, torch.float16, 1e-3, 1e-2),
            (rnnt_utils.get_B2_T4_U3_D3_data, torch.float16, 1e-3, 1e-2),
        ]
    )
628
629
630
631
632
633
634
635
636
637
638
639
640
    def test_rnnt_loss_costs_and_gradients(self, data_func, dtype, atol, rtol):
        data, ref_costs, ref_gradients = data_func(
            dtype=dtype,
            device=self.device,
        )
        self._test_costs_and_gradients(
            data=data,
            ref_costs=ref_costs,
            ref_gradients=ref_gradients,
            atol=atol,
            rtol=rtol,
        )

641
642
    @parameterized.expand([(True,), (False,)])
    def test_rnnt_loss_costs_and_gradients_random_data_with_numpy_fp32(self, fused_log_softmax):
643
644
        seed = 777
        for i in range(5):
645
646
647
            data = rnnt_utils.get_random_data(
                fused_log_softmax=fused_log_softmax, dtype=torch.float32, device=self.device, seed=(seed + i)
            )
648
            ref_costs, ref_gradients = rnnt_utils.compute_with_numpy_transducer(data=data)
649
            self._test_costs_and_gradients(data=data, ref_costs=ref_costs, ref_gradients=ref_gradients)
650

651
652
653
654
655
656
657
658
659
    def test_rnnt_loss_nonfused_softmax(self):
        data = rnnt_utils.get_B1_T10_U3_D4_data()
        ref_costs, ref_gradients = rnnt_utils.compute_with_numpy_transducer(data=data)
        self._test_costs_and_gradients(
            data=data,
            ref_costs=ref_costs,
            ref_gradients=ref_gradients,
        )

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    def test_psd(self):
        """Verify the ``F.psd`` method by the numpy implementation.
        Given the multi-channel complex-valued spectrum as the input,
        the output of ``F.psd`` should be identical to that of ``psd_numpy``.
        """
        channel = 4
        n_fft_bin = 10
        frame = 5
        specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
        psd = beamform_utils.psd_numpy(specgram)
        psd_audio = F.psd(torch.tensor(specgram, dtype=self.complex_dtype, device=self.device))
        self.assertEqual(torch.tensor(psd, dtype=self.complex_dtype, device=self.device), psd_audio)

    @parameterized.expand(
        [
            (True,),
            (False,),
        ]
    )
    def test_psd_with_mask(self, normalize: bool):
        """Verify the ``F.psd`` method by the numpy implementation.
        Given the multi-channel complex-valued spectrum and the single-channel real-valued mask
        as the inputs, the output of ``F.psd`` should be identical to that of ``psd_numpy``.
        """
        channel = 4
        n_fft_bin = 10
        frame = 5
        specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
        mask = np.random.random((n_fft_bin, frame))
        psd = beamform_utils.psd_numpy(specgram, mask, normalize)
        psd_audio = F.psd(
            torch.tensor(specgram, dtype=self.complex_dtype, device=self.device),
            torch.tensor(mask, dtype=self.dtype, device=self.device),
            normalize=normalize,
        )
        self.assertEqual(torch.tensor(psd, dtype=self.complex_dtype, device=self.device), psd_audio)

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
    def test_mvdr_weights_souden(self):
        """Verify ``F.mvdr_weights_souden`` method by numpy implementation.
        Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
        and an integer indicating the reference channel, ``F.mvdr_weights_souden`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_souden_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = 0
        psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_souden_numpy(psd_s, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_souden(
            torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            reference_channel,
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

    def test_mvdr_weights_souden_with_tensor(self):
        """Verify ``F.mvdr_weights_souden`` method by numpy implementation.
        Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
        and a one-hot Tensor indicating the reference channel, ``F.mvdr_weights_souden`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_souden_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = np.zeros(channel)
        reference_channel[0] = 1
        psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_souden_numpy(psd_s, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_souden(
            torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

    def test_mvdr_weights_rtf(self):
        """Verify ``F.mvdr_weights_rtf`` method by numpy implementation.
        Given the relative transfer function (RTF) of target speech (Tensor of dimension `(..., freq, channel)`),
        the PSD matrix of noise (Tensor of dimension `(..., freq, channel, channel)`), and an integer
        indicating the reference channel as inputs, ``F.mvdr_weights_rtf`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_rtf_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = 0
        rtf = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_rtf_numpy(rtf, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_rtf(
            torch.tensor(rtf, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            reference_channel,
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

    def test_mvdr_weights_rtf_with_tensor(self):
        """Verify ``F.mvdr_weights_rtf`` method by numpy implementation.
        Given the relative transfer function (RTF) of target speech (Tensor of dimension `(..., freq, channel)`),
        the PSD matrix of noise (Tensor of dimension `(..., freq, channel, channel)`), and a one-hot Tensor
        indicating the reference channel as inputs, ``F.mvdr_weights_rtf`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_rtf_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = np.zeros(channel)
        reference_channel[0] = 1
        rtf = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_rtf_numpy(rtf, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_rtf(
            torch.tensor(rtf, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
793
794
795
796
797
798
799
800
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

801
802
803
804
805
806
807
808
809
810
811
812
813
814
    def test_rtf_evd(self):
        """Verify ``F.rtf_evd`` method by the numpy implementation.
        Given the multi-channel complex-valued spectrum, we compute the PSD matrix as the input,
        ``F.rtf_evd`` outputs the relative transfer function (RTF) (Tensor of dimension `(..., freq, channel)`),
        which should be identical to the output of ``rtf_evd_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        specgram = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        psd = np.einsum("fc,fd->fcd", specgram.conj(), specgram)
        rtf = beamform_utils.rtf_evd_numpy(psd)
        rtf_audio = F.rtf_evd(torch.tensor(psd, dtype=self.complex_dtype, device=self.device))
        self.assertEqual(torch.tensor(rtf, dtype=self.complex_dtype, device=self.device), rtf_audio)

815
816
    @parameterized.expand(
        [
817
818
819
            (1, True),
            (2, False),
            (3, True),
820
821
        ]
    )
822
    def test_rtf_power(self, n_iter, diagonal_loading):
823
824
825
826
827
828
829
830
831
832
833
        """Verify ``F.rtf_power`` method by numpy implementation.
        Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
        an integer indicating the reference channel, and an integer for number of iterations, ``F.rtf_power``
        outputs the relative transfer function (RTF) (Tensor of dimension `(..., freq, channel)`),
        which should be identical to the output of ``rtf_power_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = 0
        psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
834
        rtf = beamform_utils.rtf_power_numpy(psd_s, psd_n, reference_channel, n_iter, diagonal_loading)
835
836
837
838
839
        rtf_audio = F.rtf_power(
            torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            reference_channel,
            n_iter,
840
            diagonal_loading=diagonal_loading,
841
842
843
844
845
        )
        self.assertEqual(torch.tensor(rtf, dtype=self.complex_dtype, device=self.device), rtf_audio)

    @parameterized.expand(
        [
846
847
848
            (1, True),
            (2, False),
            (3, True),
849
850
        ]
    )
851
    def test_rtf_power_with_tensor(self, n_iter, diagonal_loading):
852
853
854
855
856
857
858
859
860
861
862
863
        """Verify ``F.rtf_power`` method by numpy implementation.
        Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
        a one-hot Tensor indicating the reference channel, and an integer for number of iterations, ``F.rtf_power``
        outputs the relative transfer function (RTF) (Tensor of dimension `(..., freq, channel)`),
        which should be identical to the output of ``rtf_power_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = np.zeros(channel)
        reference_channel[0] = 1
        psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
864
        rtf = beamform_utils.rtf_power_numpy(psd_s, psd_n, reference_channel, n_iter, diagonal_loading)
865
866
867
868
869
        rtf_audio = F.rtf_power(
            torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
            n_iter,
870
            diagonal_loading=diagonal_loading,
871
872
873
        )
        self.assertEqual(torch.tensor(rtf, dtype=self.complex_dtype, device=self.device), rtf_audio)

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
    def test_apply_beamforming(self):
        """Verify ``F.apply_beamforming`` method by numpy implementation.
        Given the multi-channel complex-valued spectrum and complex-valued
        beamforming weights (Tensor of dimension `(..., freq, channel)`) as inputs,
        ``F.apply_beamforming`` outputs the single-channel complex-valued enhanced
        spectrum, which should be identical to the output of ``apply_beamforming_numpy``.
        """
        channel = 4
        n_fft_bin = 10
        frame = 5
        beamform_weights = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
        specgram_enhanced = beamform_utils.apply_beamforming_numpy(beamform_weights, specgram)
        specgram_enhanced_audio = F.apply_beamforming(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            torch.tensor(specgram, dtype=self.complex_dtype, device=self.device),
        )
        self.assertEqual(
            torch.tensor(specgram_enhanced, dtype=self.complex_dtype, device=self.device), specgram_enhanced_audio
        )

895
896

class FunctionalCPUOnly(TestBaseMixin):
897
    def test_melscale_fbanks_no_warning_high_n_freq(self):
898
899
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
900
            F.melscale_fbanks(288, 0, 8000, 128, 16000)
901
902
        assert len(w) == 0

903
    def test_melscale_fbanks_no_warning_low_n_mels(self):
904
905
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
906
            F.melscale_fbanks(201, 0, 8000, 89, 16000)
907
908
        assert len(w) == 0

909
    def test_melscale_fbanks_warning(self):
910
911
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
912
            F.melscale_fbanks(201, 0, 8000, 128, 16000)
913
        assert len(w) == 1