functional_impl.py 31.8 KB
Newer Older
dhthompson's avatar
dhthompson committed
1
2
"""Test definition common to CPU and CUDA"""
import itertools
3
import math
dhthompson's avatar
dhthompson committed
4
5
6
import warnings

import numpy as np
7
8
import torch
import torchaudio.functional as F
9
from parameterized import parameterized
10
from scipy import signal
11
12
13
14
15
16
from torchaudio_unittest.common_utils import (
    TestBaseMixin,
    get_sinusoid,
    nested_params,
    get_whitenoise,
    rnnt_utils,
17
    beamform_utils,
18
)
19
20


dhthompson's avatar
dhthompson committed
21
class Functional(TestBaseMixin):
22
23
24
    def _test_resample_waveform_accuracy(
        self, up_scale_factor=None, down_scale_factor=None, resampling_method="sinc_interpolation", atol=1e-1, rtol=1e-4
    ):
25
26
27
28
29
30
        # resample the signal and compare it to the ground truth
        n_to_trim = 20
        sample_rate = 1000
        new_sample_rate = sample_rate

        if up_scale_factor is not None:
31
            new_sample_rate = int(new_sample_rate * up_scale_factor)
32
33

        if down_scale_factor is not None:
34
            new_sample_rate = int(new_sample_rate / down_scale_factor)
35
36
37
38
39

        duration = 5  # seconds
        original_timestamps = torch.arange(0, duration, 1.0 / sample_rate)

        sound = 123 * torch.cos(2 * math.pi * 3 * original_timestamps).unsqueeze(0)
40
        estimate = F.resample(sound, sample_rate, new_sample_rate, resampling_method=resampling_method).squeeze()
41

42
        new_timestamps = torch.arange(0, duration, 1.0 / new_sample_rate)[: estimate.size(0)]
43
44
45
46
47
48
49
50
        ground_truth = 123 * torch.cos(2 * math.pi * 3 * new_timestamps)

        # trim the first/last n samples as these points have boundary effects
        ground_truth = ground_truth[..., n_to_trim:-n_to_trim]
        estimate = estimate[..., n_to_trim:-n_to_trim]

        self.assertEqual(estimate, ground_truth, atol=atol, rtol=rtol)

51
    def _test_costs_and_gradients(self, data, ref_costs, ref_gradients, atol=1e-6, rtol=1e-2):
52
53
54
55
56
57
        logits_shape = data["logits"].shape
        costs, gradients = rnnt_utils.compute_with_pytorch_transducer(data=data)
        self.assertEqual(costs, ref_costs, atol=atol, rtol=rtol)
        self.assertEqual(logits_shape, gradients.shape)
        self.assertEqual(gradients, ref_gradients, atol=atol, rtol=rtol)

58
    def test_lfilter_simple(self):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        """
        Create a very basic signal,
        Then make a simple 4th order delay
        The output should be same as the input but shifted
        """

        torch.random.manual_seed(42)
        waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device)
        b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
        output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs)

        self.assertEqual(output_waveform[:, 3:], waveform[:, 0:-3], atol=1e-5, rtol=1e-5)

73
    def test_lfilter_clamp(self):
74
75
76
77
78
79
80
        input_signal = torch.ones(1, 44100 * 1, dtype=self.dtype, device=self.device)
        b_coeffs = torch.tensor([1, 0], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, -0.95], dtype=self.dtype, device=self.device)
        output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=True)
        assert output_signal.max() <= 1
        output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=False)
        assert output_signal.max() > 1
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    @parameterized.expand(
        [
            ((44100,), (4,), (44100,)),
            (
                (3, 44100),
                (4,),
                (
                    3,
                    44100,
                ),
            ),
            (
                (2, 3, 44100),
                (4,),
                (
                    2,
                    3,
                    44100,
                ),
            ),
            (
                (1, 2, 3, 44100),
                (4,),
                (
                    1,
                    2,
                    3,
                    44100,
                ),
            ),
            ((44100,), (2, 4), (2, 44100)),
            ((3, 44100), (1, 4), (3, 1, 44100)),
            ((1, 2, 44100), (3, 4), (1, 2, 3, 44100)),
        ]
    )
117
    def test_lfilter_shape(self, input_shape, coeff_shape, target_shape):
118
        torch.random.manual_seed(42)
119
120
121
        waveform = torch.rand(*input_shape, dtype=self.dtype, device=self.device)
        b_coeffs = torch.rand(*coeff_shape, dtype=self.dtype, device=self.device)
        a_coeffs = torch.rand(*coeff_shape, dtype=self.dtype, device=self.device)
122
        output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs, batching=False)
123
124
        assert input_shape == waveform.size()
        assert target_shape == output_waveform.size()
125

126
    def test_lfilter_9th_order_filter_stability(self):
127
128
129
130
131
132
133
134
135
        """
        Validate the precision of lfilter against reference scipy implementation when using high order filter.
        The reference implementation use cascaded second-order filters so is more numerically accurate.
        """
        # create an impulse signal
        x = torch.zeros(1024, dtype=self.dtype, device=self.device)
        x[0] = 1

        # get target impulse response
136
        sos = signal.butter(9, 850, "hp", fs=22050, output="sos")
137
138
139
        y = torch.from_numpy(signal.sosfilt(sos, x.cpu().numpy())).to(self.dtype).to(self.device)

        # get lfilter coefficients
140
141
        b, a = signal.butter(9, 850, "hp", fs=22050, output="ba")
        b, a = torch.from_numpy(b).to(self.dtype).to(self.device), torch.from_numpy(a).to(self.dtype).to(self.device)
142
143
144
145
146

        # predict impulse response
        yhat = F.lfilter(x, a, b, False)
        self.assertEqual(yhat, y, atol=1e-4, rtol=1e-5)

147
148
149
150
151
    def test_filtfilt_simple(self):
        """
        Check that, for an arbitrary signal, applying filtfilt with filter coefficients
        corresponding to a pure delay filter imparts no time delay.
        """
152
        waveform = get_whitenoise(sample_rate=8000, n_channels=2, dtype=self.dtype).to(device=self.device)
153
154
        b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
155
        padded_waveform = torch.cat((waveform, torch.zeros(2, 3, dtype=self.dtype, device=self.device)), axis=1)
156
157
158
159
160
161
162
163
164
165
166
167
168
        output_waveform = F.filtfilt(padded_waveform, a_coeffs, b_coeffs)

        self.assertEqual(output_waveform, padded_waveform, atol=1e-5, rtol=1e-5)

    def test_filtfilt_filter_sinusoid(self):
        """
        Check that, for a signal comprising two sinusoids, applying filtfilt
        with appropriate filter coefficients correctly removes the higher-frequency
        sinusoid while imparting no time delay.
        """
        T = 1.0
        samples = 1000

169
170
171
        waveform_k0 = get_sinusoid(frequency=5, sample_rate=samples // T, dtype=self.dtype, device=self.device).squeeze(
            0
        )
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        waveform_k1 = get_sinusoid(
            frequency=200,
            sample_rate=samples // T,
            dtype=self.dtype,
            device=self.device,
        ).squeeze(0)
        waveform = waveform_k0 + waveform_k1

        # Transfer function numerator and denominator polynomial coefficients
        # corresponding to 8th-order Butterworth filter with 100-cycle/T cutoff.
        # Generated with
        # >>> from scipy import signal
        # >>> b_coeffs, a_coeffs = signal.butter(8, 0.2)
        b_coeffs = torch.tensor(
            [
                2.39596441e-05,
                1.91677153e-04,
                6.70870035e-04,
                1.34174007e-03,
                1.67717509e-03,
                1.34174007e-03,
                6.70870035e-04,
                1.91677153e-04,
                2.39596441e-05,
            ],
            dtype=self.dtype,
            device=self.device,
        )
        a_coeffs = torch.tensor(
            [
                1.0,
                -4.78451489,
                10.44504107,
                -13.45771989,
                11.12933104,
                -6.0252604,
                2.0792738,
                -0.41721716,
                0.0372001,
            ],
            dtype=self.dtype,
            device=self.device,
        )

        # Extend waveform in each direction, preserving periodicity.
        padded_waveform = torch.cat((waveform[:-1], waveform, waveform[1:]))

        output_waveform = F.filtfilt(padded_waveform, a_coeffs, b_coeffs)

        # Remove padding from output waveform; confirm that result
        # closely matches waveform_k0.
        self.assertEqual(
224
            output_waveform[samples - 1 : 2 * samples - 1],
225
226
227
228
229
            waveform_k0,
            atol=1e-3,
            rtol=1e-3,
        )

230
    @parameterized.expand([(0.0,), (1.0,), (2.0,), (3.0,)])
Caroline Chen's avatar
Caroline Chen committed
231
    def test_spectrogram_grad_at_zero(self, power):
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        """The gradient of power spectrogram should not be nan but zero near x=0

        https://github.com/pytorch/audio/issues/993
        """
        x = torch.zeros(1, 22050, requires_grad=True)
        spec = F.spectrogram(
            x,
            pad=0,
            window=None,
            n_fft=2048,
            hop_length=None,
            win_length=None,
            power=power,
            normalized=False,
        )
        spec.sum().backward()
        assert not x.grad.isnan().sum()
249

dhthompson's avatar
dhthompson committed
250
    def test_compute_deltas_one_channel(self):
251
252
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0]]], dtype=self.dtype, device=self.device)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]], dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
253
254
255
256
        computed = F.compute_deltas(specgram, win_length=3)
        self.assertEqual(computed, expected)

    def test_compute_deltas_two_channels(self):
257
258
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]]], dtype=self.dtype, device=self.device)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5], [0.5, 1.0, 1.0, 0.5]]], dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
259
260
261
262
263
264
        computed = F.compute_deltas(specgram, win_length=3)
        self.assertEqual(computed, expected)

    @parameterized.expand([(100,), (440,)])
    def test_detect_pitch_frequency_pitch(self, frequency):
        sample_rate = 44100
265
        test_sine_waveform = get_sinusoid(frequency=frequency, sample_rate=sample_rate, duration=5)
dhthompson's avatar
dhthompson committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279

        freq = F.detect_pitch_frequency(test_sine_waveform, sample_rate)

        threshold = 1
        s = ((freq - frequency).abs() > threshold).sum()
        self.assertFalse(s)

    @parameterized.expand([([100, 100],), ([2, 100, 100],), ([2, 2, 100, 100],)])
    def test_amplitude_to_DB_reversible(self, shape):
        """Round trip between amplitude and db should return the original for various shape

        This implicitly also tests `DB_to_amplitude`.

        """
280
281
        amplitude_mult = 20.0
        power_mult = 10.0
dhthompson's avatar
dhthompson committed
282
283
284
285
286
        amin = 1e-10
        ref = 1.0
        db_mult = math.log10(max(amin, ref))

        torch.manual_seed(0)
287
        spec = torch.rand(*shape, dtype=self.dtype, device=self.device) * 200
dhthompson's avatar
dhthompson committed
288
289
290
291
292
293
294
295
296

        # Spectrogram amplitude -> DB -> amplitude
        db = F.amplitude_to_DB(spec, amplitude_mult, amin, db_mult, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, 0.5)

        self.assertEqual(x2, spec, atol=5e-5, rtol=1e-5)

        # Spectrogram power -> DB -> power
        db = F.amplitude_to_DB(spec, power_mult, amin, db_mult, top_db=None)
297
        x2 = F.DB_to_amplitude(db, ref, 1.0)
dhthompson's avatar
dhthompson committed
298
299
300
301
302
303

        self.assertEqual(x2, spec)

    @parameterized.expand([([100, 100],), ([2, 100, 100],), ([2, 2, 100, 100],)])
    def test_amplitude_to_DB_top_db_clamp(self, shape):
        """Ensure values are properly clamped when `top_db` is supplied."""
304
        amplitude_mult = 20.0
dhthompson's avatar
dhthompson committed
305
306
307
        amin = 1e-10
        ref = 1.0
        db_mult = math.log10(max(amin, ref))
308
        top_db = 40.0
dhthompson's avatar
dhthompson committed
309
310
311
312
313
314

        torch.manual_seed(0)
        # A random tensor is used for increased entropy, but the max and min for
        # each spectrogram still need to be predictable. The max determines the
        # decibel cutoff, and the distance from the min must be large enough
        # that it triggers a clamp.
315
        spec = torch.rand(*shape, dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
316
317
318
319
320
321
        # Ensure each spectrogram has a min of 0 and a max of 1.
        spec -= spec.amin([-2, -1])[..., None, None]
        spec /= spec.amax([-2, -1])[..., None, None]
        # Expand the range to (0, 200) - wide enough to properly test clamping.
        spec *= 200

322
        decibels = F.amplitude_to_DB(spec, amplitude_mult, amin, db_mult, top_db=top_db)
dhthompson's avatar
dhthompson committed
323
324
        # Ensure the clamp was applied
        below_limit = decibels < 6.0205
325
326
        assert not below_limit.any(), "{} decibel values were below the expected cutoff:\n{}".format(
            below_limit.sum().item(), decibels
dhthompson's avatar
dhthompson committed
327
328
329
        )
        # Ensure it didn't over-clamp
        close_to_limit = decibels < 6.0207
330
        assert close_to_limit.any(), f"No values were close to the limit. Did it over-clamp?\n{decibels}"
dhthompson's avatar
dhthompson committed
331

332
333
334
335
    @parameterized.expand(
        list(itertools.product([(2, 1025, 400), (1, 201, 100)], [100], [0.0, 30.0], [1, 2], [0.33, 1.0]))
    )
    def test_mask_along_axis(self, shape, mask_param, mask_value, axis, p):
dhthompson's avatar
dhthompson committed
336
        torch.random.manual_seed(42)
337
        specgram = torch.randn(*shape, dtype=self.dtype, device=self.device)
338
339
340
341
342

        if p != 1.0:
            mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis, p=p)
        else:
            mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)
dhthompson's avatar
dhthompson committed
343
344
345
346
347

        other_axis = 1 if axis == 2 else 2

        masked_columns = (mask_specgram == mask_value).sum(other_axis)
        num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
348
        num_masked_columns = torch.div(num_masked_columns, mask_specgram.size(0), rounding_mode="floor")
dhthompson's avatar
dhthompson committed
349

350
351
352
        if p != 1.0:
            mask_param = min(mask_param, int(specgram.shape[axis] * p))

dhthompson's avatar
dhthompson committed
353
354
355
        assert mask_specgram.size() == specgram.size()
        assert num_masked_columns < mask_param

356
357
    @parameterized.expand(list(itertools.product([100], [0.0, 30.0], [2, 3], [0.2, 1.0])))
    def test_mask_along_axis_iid(self, mask_param, mask_value, axis, p):
dhthompson's avatar
dhthompson committed
358
        torch.random.manual_seed(42)
359
        specgrams = torch.randn(4, 2, 1025, 400, dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
360

361
362
363
364
        if p != 1.0:
            mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis, p=p)
        else:
            mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)
dhthompson's avatar
dhthompson committed
365
366
367
368
369
370

        other_axis = 2 if axis == 3 else 3

        masked_columns = (mask_specgrams == mask_value).sum(other_axis)
        num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)

371
372
373
        if p != 1.0:
            mask_param = min(mask_param, int(specgrams.shape[axis] * p))

dhthompson's avatar
dhthompson committed
374
375
        assert mask_specgrams.size() == specgrams.size()
        assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()
376

377
    @parameterized.expand(list(itertools.product([(2, 1025, 400), (1, 201, 100)], [100], [0.0, 30.0], [1, 2])))
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    def test_mask_along_axis_preserve(self, shape, mask_param, mask_value, axis):
        """mask_along_axis should not alter original input Tensor

        Test is run 5 times to bound the probability of no masking occurring to 1e-10
        See https://github.com/pytorch/audio/issues/1478
        """
        torch.random.manual_seed(42)
        for _ in range(5):
            specgram = torch.randn(*shape, dtype=self.dtype, device=self.device)
            specgram_copy = specgram.clone()
            F.mask_along_axis(specgram, mask_param, mask_value, axis)

            self.assertEqual(specgram, specgram_copy)

392
    @parameterized.expand(list(itertools.product([100], [0.0, 30.0], [2, 3])))
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    def test_mask_along_axis_iid_preserve(self, mask_param, mask_value, axis):
        """mask_along_axis_iid should not alter original input Tensor

        Test is run 5 times to bound the probability of no masking occurring to 1e-10
        See https://github.com/pytorch/audio/issues/1478
        """
        torch.random.manual_seed(42)
        for _ in range(5):
            specgrams = torch.randn(4, 2, 1025, 400, dtype=self.dtype, device=self.device)
            specgrams_copy = specgrams.clone()
            F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)

            self.assertEqual(specgrams, specgrams_copy)

407
408
409
410
411
412
413
414
    @parameterized.expand(
        list(
            itertools.product(
                ["sinc_interpolation", "kaiser_window"],
                [16000, 44100],
            )
        )
    )
415
416
417
418
419
420
    def test_resample_identity(self, resampling_method, sample_rate):
        waveform = get_whitenoise(sample_rate=sample_rate, duration=1)

        resampled = F.resample(waveform, sample_rate, sample_rate)
        self.assertEqual(waveform, resampled)

421
422
423
    @parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
    def test_resample_waveform_upsample_size(self, resampling_method):
        sr = 16000
424
425
426
427
        waveform = get_whitenoise(
            sample_rate=sr,
            duration=0.5,
        )
428
429
430
431
432
433
        upsampled = F.resample(waveform, sr, sr * 2, resampling_method=resampling_method)
        assert upsampled.size(-1) == waveform.size(-1) * 2

    @parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
    def test_resample_waveform_downsample_size(self, resampling_method):
        sr = 16000
434
435
436
437
        waveform = get_whitenoise(
            sample_rate=sr,
            duration=0.5,
        )
438
439
440
441
442
443
        downsampled = F.resample(waveform, sr, sr // 2, resampling_method=resampling_method)
        assert downsampled.size(-1) == waveform.size(-1) // 2

    @parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
    def test_resample_waveform_identity_size(self, resampling_method):
        sr = 16000
444
445
446
447
        waveform = get_whitenoise(
            sample_rate=sr,
            duration=0.5,
        )
448
449
450
        resampled = F.resample(waveform, sr, sr, resampling_method=resampling_method)
        assert resampled.size(-1) == waveform.size(-1)

451
452
453
454
455
456
457
458
    @parameterized.expand(
        list(
            itertools.product(
                ["sinc_interpolation", "kaiser_window"],
                list(range(1, 20)),
            )
        )
    )
459
460
461
    def test_resample_waveform_downsample_accuracy(self, resampling_method, i):
        self._test_resample_waveform_accuracy(down_scale_factor=i * 2, resampling_method=resampling_method)

462
463
464
465
466
467
468
469
    @parameterized.expand(
        list(
            itertools.product(
                ["sinc_interpolation", "kaiser_window"],
                list(range(1, 20)),
            )
        )
    )
470
471
472
    def test_resample_waveform_upsample_accuracy(self, resampling_method, i):
        self._test_resample_waveform_accuracy(up_scale_factor=1.0 + i / 20.0, resampling_method=resampling_method)

473
474
    @nested_params([0.5, 1.01, 1.3])
    def test_phase_vocoder_shape(self, rate):
475
476
477
478
479
480
481
        """Verify the output shape of phase vocoder"""
        hop_length = 256
        num_freq = 1025
        num_frames = 400
        batch_size = 2

        torch.random.manual_seed(42)
482
        spec = torch.randn(batch_size, num_freq, num_frames, dtype=self.complex_dtype, device=self.device)
483

484
        phase_advance = torch.linspace(0, np.pi * hop_length, num_freq, dtype=self.dtype, device=self.device)[..., None]
485
486
487
488
489

        spec_stretch = F.phase_vocoder(spec, rate=rate, phase_advance=phase_advance)

        assert spec.dim() == spec_stretch.dim()
        expected_shape = torch.Size([batch_size, num_freq, int(np.ceil(num_frames / rate))])
490
        output_shape = spec_stretch.shape
491
492
        assert output_shape == expected_shape

yangarbiter's avatar
yangarbiter committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    @parameterized.expand(
        [
            # words
            ["", "", 0],  # equal
            ["abc", "abc", 0],
            ["ᑌᑎIᑕO", "ᑌᑎIᑕO", 0],
            ["abc", "", 3],  # deletion
            ["aa", "aaa", 1],
            ["aaa", "aa", 1],
            ["ᑌᑎI", "ᑌᑎIᑕO", 2],
            ["aaa", "aba", 1],  # substitution
            ["aba", "aaa", 1],
            ["aba", "   ", 3],
            ["abc", "bcd", 2],  # mix deletion and substitution
            ["0ᑌᑎI", "ᑌᑎIᑕO", 3],
            # sentences
            [["hello", "", "Tᕮ᙭T"], ["hello", "", "Tᕮ᙭T"], 0],  # equal
            [[], [], 0],
            [["hello", "world"], ["hello", "world", "!"], 1],  # deletion
            [["hello", "world"], ["world"], 1],
            [["hello", "world"], [], 2],
514
515
516
517
518
519
520
            [
                [
                    "Tᕮ᙭T",
                ],
                ["world"],
                1,
            ],  # substitution
yangarbiter's avatar
yangarbiter committed
521
522
523
524
525
526
527
528
529
530
531
            [["Tᕮ᙭T", "XD"], ["world", "hello"], 2],
            [["", "XD"], ["world", ""], 2],
            ["aba", "   ", 3],
            [["hello", "world"], ["world", "hello", "!"], 2],  # mix deletion and substitution
            [["Tᕮ᙭T", "world", "LOL", "XD"], ["world", "hello", "ʕ•́ᴥ•̀ʔっ"], 3],
        ]
    )
    def test_simple_case_edit_distance(self, seq1, seq2, distance):
        assert F.edit_distance(seq1, seq2) == distance
        assert F.edit_distance(seq2, seq1) == distance

532
533
534
535
536
537
538
539
540
541
    @nested_params(
        [-4, -2, 0, 2, 4],
    )
    def test_pitch_shift_shape(self, n_steps):
        sample_rate = 16000
        torch.random.manual_seed(42)
        waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device)
        waveform_shift = F.pitch_shift(waveform, sample_rate, n_steps)
        assert waveform.size() == waveform_shift.size()

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    def test_rnnt_loss_basic_backward(self):
        logits, targets, logit_lengths, target_lengths = rnnt_utils.get_basic_data(self.device)
        loss = F.rnnt_loss(logits, targets, logit_lengths, target_lengths)
        loss.backward()

    def test_rnnt_loss_basic_forward_no_grad(self):
        """In early stage, calls to `rnnt_loss` resulted in segmentation fault when
        `logits` have `requires_grad = False`. This test makes sure that this no longer
        occurs and the functional call runs without error.

        See https://github.com/pytorch/audio/pull/1707
        """
        logits, targets, logit_lengths, target_lengths = rnnt_utils.get_basic_data(self.device)
        logits.requires_grad_(False)
        F.rnnt_loss(logits, targets, logit_lengths, target_lengths)

558
559
560
561
562
563
564
565
    @parameterized.expand(
        [
            (rnnt_utils.get_B1_T2_U3_D5_data, torch.float32, 1e-6, 1e-2),
            (rnnt_utils.get_B2_T4_U3_D3_data, torch.float32, 1e-6, 1e-2),
            (rnnt_utils.get_B1_T2_U3_D5_data, torch.float16, 1e-3, 1e-2),
            (rnnt_utils.get_B2_T4_U3_D3_data, torch.float16, 1e-3, 1e-2),
        ]
    )
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    def test_rnnt_loss_costs_and_gradients(self, data_func, dtype, atol, rtol):
        data, ref_costs, ref_gradients = data_func(
            dtype=dtype,
            device=self.device,
        )
        self._test_costs_and_gradients(
            data=data,
            ref_costs=ref_costs,
            ref_gradients=ref_gradients,
            atol=atol,
            rtol=rtol,
        )

    def test_rnnt_loss_costs_and_gradients_random_data_with_numpy_fp32(self):
        seed = 777
        for i in range(5):
            data = rnnt_utils.get_random_data(dtype=torch.float32, device=self.device, seed=(seed + i))
            ref_costs, ref_gradients = rnnt_utils.compute_with_numpy_transducer(data=data)
584
            self._test_costs_and_gradients(data=data, ref_costs=ref_costs, ref_gradients=ref_gradients)
585

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    def test_psd(self):
        """Verify the ``F.psd`` method by the numpy implementation.
        Given the multi-channel complex-valued spectrum as the input,
        the output of ``F.psd`` should be identical to that of ``psd_numpy``.
        """
        channel = 4
        n_fft_bin = 10
        frame = 5
        specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
        psd = beamform_utils.psd_numpy(specgram)
        psd_audio = F.psd(torch.tensor(specgram, dtype=self.complex_dtype, device=self.device))
        self.assertEqual(torch.tensor(psd, dtype=self.complex_dtype, device=self.device), psd_audio)

    @parameterized.expand(
        [
            (True,),
            (False,),
        ]
    )
    def test_psd_with_mask(self, normalize: bool):
        """Verify the ``F.psd`` method by the numpy implementation.
        Given the multi-channel complex-valued spectrum and the single-channel real-valued mask
        as the inputs, the output of ``F.psd`` should be identical to that of ``psd_numpy``.
        """
        channel = 4
        n_fft_bin = 10
        frame = 5
        specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
        mask = np.random.random((n_fft_bin, frame))
        psd = beamform_utils.psd_numpy(specgram, mask, normalize)
        psd_audio = F.psd(
            torch.tensor(specgram, dtype=self.complex_dtype, device=self.device),
            torch.tensor(mask, dtype=self.dtype, device=self.device),
            normalize=normalize,
        )
        self.assertEqual(torch.tensor(psd, dtype=self.complex_dtype, device=self.device), psd_audio)

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    def test_mvdr_weights_souden(self):
        """Verify ``F.mvdr_weights_souden`` method by numpy implementation.
        Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
        and an integer indicating the reference channel, ``F.mvdr_weights_souden`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_souden_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = 0
        psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_souden_numpy(psd_s, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_souden(
            torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            reference_channel,
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

    def test_mvdr_weights_souden_with_tensor(self):
        """Verify ``F.mvdr_weights_souden`` method by numpy implementation.
        Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
        and a one-hot Tensor indicating the reference channel, ``F.mvdr_weights_souden`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_souden_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = np.zeros(channel)
        reference_channel[0] = 1
        psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_souden_numpy(psd_s, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_souden(
            torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

    def test_mvdr_weights_rtf(self):
        """Verify ``F.mvdr_weights_rtf`` method by numpy implementation.
        Given the relative transfer function (RTF) of target speech (Tensor of dimension `(..., freq, channel)`),
        the PSD matrix of noise (Tensor of dimension `(..., freq, channel, channel)`), and an integer
        indicating the reference channel as inputs, ``F.mvdr_weights_rtf`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_rtf_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = 0
        rtf = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_rtf_numpy(rtf, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_rtf(
            torch.tensor(rtf, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            reference_channel,
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

    def test_mvdr_weights_rtf_with_tensor(self):
        """Verify ``F.mvdr_weights_rtf`` method by numpy implementation.
        Given the relative transfer function (RTF) of target speech (Tensor of dimension `(..., freq, channel)`),
        the PSD matrix of noise (Tensor of dimension `(..., freq, channel, channel)`), and a one-hot Tensor
        indicating the reference channel as inputs, ``F.mvdr_weights_rtf`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_rtf_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = np.zeros(channel)
        reference_channel[0] = 1
        rtf = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_rtf_numpy(rtf, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_rtf(
            torch.tensor(rtf, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
719
720
721
722
723
724
725
726
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

727
728
729
730
731
732
733
734
735
736
737
738
739
740
    def test_rtf_evd(self):
        """Verify ``F.rtf_evd`` method by the numpy implementation.
        Given the multi-channel complex-valued spectrum, we compute the PSD matrix as the input,
        ``F.rtf_evd`` outputs the relative transfer function (RTF) (Tensor of dimension `(..., freq, channel)`),
        which should be identical to the output of ``rtf_evd_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        specgram = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        psd = np.einsum("fc,fd->fcd", specgram.conj(), specgram)
        rtf = beamform_utils.rtf_evd_numpy(psd)
        rtf_audio = F.rtf_evd(torch.tensor(psd, dtype=self.complex_dtype, device=self.device))
        self.assertEqual(torch.tensor(rtf, dtype=self.complex_dtype, device=self.device), rtf_audio)

741
742

class FunctionalCPUOnly(TestBaseMixin):
743
    def test_melscale_fbanks_no_warning_high_n_freq(self):
744
745
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
746
            F.melscale_fbanks(288, 0, 8000, 128, 16000)
747
748
        assert len(w) == 0

749
    def test_melscale_fbanks_no_warning_low_n_mels(self):
750
751
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
752
            F.melscale_fbanks(201, 0, 8000, 89, 16000)
753
754
        assert len(w) == 0

755
    def test_melscale_fbanks_warning(self):
756
757
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
758
            F.melscale_fbanks(201, 0, 8000, 128, 16000)
759
        assert len(w) == 1