functional_impl.py 38.2 KB
Newer Older
dhthompson's avatar
dhthompson committed
1
2
"""Test definition common to CPU and CUDA"""
import itertools
3
import math
dhthompson's avatar
dhthompson committed
4
5
6
import warnings

import numpy as np
7
8
import torch
import torchaudio.functional as F
9
from parameterized import parameterized
10
from scipy import signal
11
from torchaudio_unittest.common_utils import (
12
    beamform_utils,
13
14
    get_sinusoid,
    get_whitenoise,
15
    nested_params,
16
    rnnt_utils,
17
    TestBaseMixin,
18
)
19
20


dhthompson's avatar
dhthompson committed
21
class Functional(TestBaseMixin):
22
23
24
    def _test_resample_waveform_accuracy(
        self, up_scale_factor=None, down_scale_factor=None, resampling_method="sinc_interpolation", atol=1e-1, rtol=1e-4
    ):
25
26
27
28
29
30
        # resample the signal and compare it to the ground truth
        n_to_trim = 20
        sample_rate = 1000
        new_sample_rate = sample_rate

        if up_scale_factor is not None:
31
            new_sample_rate = int(new_sample_rate * up_scale_factor)
32
33

        if down_scale_factor is not None:
34
            new_sample_rate = int(new_sample_rate / down_scale_factor)
35
36
37
38
39

        duration = 5  # seconds
        original_timestamps = torch.arange(0, duration, 1.0 / sample_rate)

        sound = 123 * torch.cos(2 * math.pi * 3 * original_timestamps).unsqueeze(0)
40
        estimate = F.resample(sound, sample_rate, new_sample_rate, resampling_method=resampling_method).squeeze()
41

42
        new_timestamps = torch.arange(0, duration, 1.0 / new_sample_rate)[: estimate.size(0)]
43
44
45
46
47
48
49
50
        ground_truth = 123 * torch.cos(2 * math.pi * 3 * new_timestamps)

        # trim the first/last n samples as these points have boundary effects
        ground_truth = ground_truth[..., n_to_trim:-n_to_trim]
        estimate = estimate[..., n_to_trim:-n_to_trim]

        self.assertEqual(estimate, ground_truth, atol=atol, rtol=rtol)

51
    def _test_costs_and_gradients(self, data, ref_costs, ref_gradients, atol=1e-6, rtol=1e-2):
52
53
54
55
56
57
        logits_shape = data["logits"].shape
        costs, gradients = rnnt_utils.compute_with_pytorch_transducer(data=data)
        self.assertEqual(costs, ref_costs, atol=atol, rtol=rtol)
        self.assertEqual(logits_shape, gradients.shape)
        self.assertEqual(gradients, ref_gradients, atol=atol, rtol=rtol)

58
    def test_lfilter_simple(self):
59
60
61
62
63
64
65
66
67
68
69
70
71
        """
        Create a very basic signal,
        Then make a simple 4th order delay
        The output should be same as the input but shifted
        """

        waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device)
        b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
        output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs)

        self.assertEqual(output_waveform[:, 3:], waveform[:, 0:-3], atol=1e-5, rtol=1e-5)

72
    def test_lfilter_clamp(self):
73
74
75
76
77
78
79
        input_signal = torch.ones(1, 44100 * 1, dtype=self.dtype, device=self.device)
        b_coeffs = torch.tensor([1, 0], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, -0.95], dtype=self.dtype, device=self.device)
        output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=True)
        assert output_signal.max() <= 1
        output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=False)
        assert output_signal.max() > 1
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    @parameterized.expand(
        [
            ((44100,), (4,), (44100,)),
            (
                (3, 44100),
                (4,),
                (
                    3,
                    44100,
                ),
            ),
            (
                (2, 3, 44100),
                (4,),
                (
                    2,
                    3,
                    44100,
                ),
            ),
            (
                (1, 2, 3, 44100),
                (4,),
                (
                    1,
                    2,
                    3,
                    44100,
                ),
            ),
            ((44100,), (2, 4), (2, 44100)),
            ((3, 44100), (1, 4), (3, 1, 44100)),
            ((1, 2, 44100), (3, 4), (1, 2, 3, 44100)),
        ]
    )
116
117
118
119
    def test_lfilter_shape(self, input_shape, coeff_shape, target_shape):
        waveform = torch.rand(*input_shape, dtype=self.dtype, device=self.device)
        b_coeffs = torch.rand(*coeff_shape, dtype=self.dtype, device=self.device)
        a_coeffs = torch.rand(*coeff_shape, dtype=self.dtype, device=self.device)
120
        output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs, batching=False)
121
122
        assert input_shape == waveform.size()
        assert target_shape == output_waveform.size()
123

124
    def test_lfilter_9th_order_filter_stability(self):
125
126
127
128
129
130
131
132
133
        """
        Validate the precision of lfilter against reference scipy implementation when using high order filter.
        The reference implementation use cascaded second-order filters so is more numerically accurate.
        """
        # create an impulse signal
        x = torch.zeros(1024, dtype=self.dtype, device=self.device)
        x[0] = 1

        # get target impulse response
134
        sos = signal.butter(9, 850, "hp", fs=22050, output="sos")
135
136
137
        y = torch.from_numpy(signal.sosfilt(sos, x.cpu().numpy())).to(self.dtype).to(self.device)

        # get lfilter coefficients
138
139
        b, a = signal.butter(9, 850, "hp", fs=22050, output="ba")
        b, a = torch.from_numpy(b).to(self.dtype).to(self.device), torch.from_numpy(a).to(self.dtype).to(self.device)
140
141
142
143
144

        # predict impulse response
        yhat = F.lfilter(x, a, b, False)
        self.assertEqual(yhat, y, atol=1e-4, rtol=1e-5)

145
146
147
148
149
    def test_filtfilt_simple(self):
        """
        Check that, for an arbitrary signal, applying filtfilt with filter coefficients
        corresponding to a pure delay filter imparts no time delay.
        """
150
        waveform = get_whitenoise(sample_rate=8000, n_channels=2, dtype=self.dtype).to(device=self.device)
151
152
        b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
153
        padded_waveform = torch.cat((waveform, torch.zeros(2, 3, dtype=self.dtype, device=self.device)), axis=1)
154
155
156
157
158
159
160
161
162
163
164
165
166
        output_waveform = F.filtfilt(padded_waveform, a_coeffs, b_coeffs)

        self.assertEqual(output_waveform, padded_waveform, atol=1e-5, rtol=1e-5)

    def test_filtfilt_filter_sinusoid(self):
        """
        Check that, for a signal comprising two sinusoids, applying filtfilt
        with appropriate filter coefficients correctly removes the higher-frequency
        sinusoid while imparting no time delay.
        """
        T = 1.0
        samples = 1000

167
168
169
        waveform_k0 = get_sinusoid(frequency=5, sample_rate=samples // T, dtype=self.dtype, device=self.device).squeeze(
            0
        )
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        waveform_k1 = get_sinusoid(
            frequency=200,
            sample_rate=samples // T,
            dtype=self.dtype,
            device=self.device,
        ).squeeze(0)
        waveform = waveform_k0 + waveform_k1

        # Transfer function numerator and denominator polynomial coefficients
        # corresponding to 8th-order Butterworth filter with 100-cycle/T cutoff.
        # Generated with
        # >>> from scipy import signal
        # >>> b_coeffs, a_coeffs = signal.butter(8, 0.2)
        b_coeffs = torch.tensor(
            [
                2.39596441e-05,
                1.91677153e-04,
                6.70870035e-04,
                1.34174007e-03,
                1.67717509e-03,
                1.34174007e-03,
                6.70870035e-04,
                1.91677153e-04,
                2.39596441e-05,
            ],
            dtype=self.dtype,
            device=self.device,
        )
        a_coeffs = torch.tensor(
            [
                1.0,
                -4.78451489,
                10.44504107,
                -13.45771989,
                11.12933104,
                -6.0252604,
                2.0792738,
                -0.41721716,
                0.0372001,
            ],
            dtype=self.dtype,
            device=self.device,
        )

        # Extend waveform in each direction, preserving periodicity.
        padded_waveform = torch.cat((waveform[:-1], waveform, waveform[1:]))

        output_waveform = F.filtfilt(padded_waveform, a_coeffs, b_coeffs)

        # Remove padding from output waveform; confirm that result
        # closely matches waveform_k0.
        self.assertEqual(
222
            output_waveform[samples - 1 : 2 * samples - 1],
223
224
225
226
227
            waveform_k0,
            atol=1e-3,
            rtol=1e-3,
        )

228
    @parameterized.expand([(0.0,), (1.0,), (2.0,), (3.0,)])
Caroline Chen's avatar
Caroline Chen committed
229
    def test_spectrogram_grad_at_zero(self, power):
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        """The gradient of power spectrogram should not be nan but zero near x=0

        https://github.com/pytorch/audio/issues/993
        """
        x = torch.zeros(1, 22050, requires_grad=True)
        spec = F.spectrogram(
            x,
            pad=0,
            window=None,
            n_fft=2048,
            hop_length=None,
            win_length=None,
            power=power,
            normalized=False,
        )
        spec.sum().backward()
        assert not x.grad.isnan().sum()
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    @parameterized.expand(
        [
            (1024,),
            (2048,),
            (4096,),
        ]
    )
    def test_spectrogram_normalization_hann_window(self, nfft):
        """This test assumes that currently, torch.stft and the existing math behind spectrogram are correct.
        The test is checking that in relation to one another, the normalization factors correctly align based on
        mathematical prediction. Using spec_false as a base, which has no normalization factors, we check to see that
        turning normalized as ``True`` or ``"window"`` will have a normalization factor of the sum of squares of hann
        window, which is calculated to be sqrt(3 * nfft / 8).
        Next, when ``normalized`` is ``"frame_length"``, we are using the normalization in torch.stft, therefore we
        assume that it is correctly normalized by a factor of sqrt(nfft). This test does not test the accuracy of
        spectrogram, but is testing the relative factors of normalization and that they align upon the frame_length
        and chosen normalize parameter.
        https://github.com/pytorch/pytorch/issues/81428
        """
        x = torch.rand(1, 22050)
        spec_false = F.spectrogram(
            x,
            pad=0,
            window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
            n_fft=nfft,
            hop_length=4,
            win_length=nfft,
            power=None,
            normalized=False,
        )

        spec_true = F.spectrogram(
            x,
            pad=0,
            window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
            n_fft=nfft,
            hop_length=4,
            win_length=nfft,
            power=None,
            normalized=True,
        )

        spec_window = F.spectrogram(
            x,
            pad=0,
            window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
            n_fft=nfft,
            hop_length=4,
            win_length=nfft,
            power=None,
            normalized="window",
        )

        spec_frame = F.spectrogram(
            x,
            pad=0,
            window=torch.hann_window(nfft, device=x.device, dtype=x.dtype),
            n_fft=nfft,
            hop_length=4,
            win_length=nfft,
            power=None,
            normalized="frame_length",
        )

        norm_factor = math.sqrt(3 * nfft / 8)
        frame_norm_factor = math.sqrt(nfft)

        self.assertEqual(spec_true, spec_window)
        self.assertEqual(spec_true, spec_false / norm_factor)
        self.assertEqual(spec_frame, spec_false / frame_norm_factor)

dhthompson's avatar
dhthompson committed
319
    def test_compute_deltas_one_channel(self):
320
321
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0]]], dtype=self.dtype, device=self.device)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]], dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
322
323
324
325
        computed = F.compute_deltas(specgram, win_length=3)
        self.assertEqual(computed, expected)

    def test_compute_deltas_two_channels(self):
326
327
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]]], dtype=self.dtype, device=self.device)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5], [0.5, 1.0, 1.0, 0.5]]], dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
328
329
330
331
332
333
        computed = F.compute_deltas(specgram, win_length=3)
        self.assertEqual(computed, expected)

    @parameterized.expand([(100,), (440,)])
    def test_detect_pitch_frequency_pitch(self, frequency):
        sample_rate = 44100
334
        test_sine_waveform = get_sinusoid(frequency=frequency, sample_rate=sample_rate, duration=5)
dhthompson's avatar
dhthompson committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348

        freq = F.detect_pitch_frequency(test_sine_waveform, sample_rate)

        threshold = 1
        s = ((freq - frequency).abs() > threshold).sum()
        self.assertFalse(s)

    @parameterized.expand([([100, 100],), ([2, 100, 100],), ([2, 2, 100, 100],)])
    def test_amplitude_to_DB_reversible(self, shape):
        """Round trip between amplitude and db should return the original for various shape

        This implicitly also tests `DB_to_amplitude`.

        """
349
350
        amplitude_mult = 20.0
        power_mult = 10.0
dhthompson's avatar
dhthompson committed
351
352
353
354
        amin = 1e-10
        ref = 1.0
        db_mult = math.log10(max(amin, ref))

355
        spec = torch.rand(*shape, dtype=self.dtype, device=self.device) * 200
dhthompson's avatar
dhthompson committed
356
357
358
359
360
361
362
363
364

        # Spectrogram amplitude -> DB -> amplitude
        db = F.amplitude_to_DB(spec, amplitude_mult, amin, db_mult, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, 0.5)

        self.assertEqual(x2, spec, atol=5e-5, rtol=1e-5)

        # Spectrogram power -> DB -> power
        db = F.amplitude_to_DB(spec, power_mult, amin, db_mult, top_db=None)
365
        x2 = F.DB_to_amplitude(db, ref, 1.0)
dhthompson's avatar
dhthompson committed
366
367
368
369
370
371

        self.assertEqual(x2, spec)

    @parameterized.expand([([100, 100],), ([2, 100, 100],), ([2, 2, 100, 100],)])
    def test_amplitude_to_DB_top_db_clamp(self, shape):
        """Ensure values are properly clamped when `top_db` is supplied."""
372
        amplitude_mult = 20.0
dhthompson's avatar
dhthompson committed
373
374
375
        amin = 1e-10
        ref = 1.0
        db_mult = math.log10(max(amin, ref))
376
        top_db = 40.0
dhthompson's avatar
dhthompson committed
377
378
379
380
381

        # A random tensor is used for increased entropy, but the max and min for
        # each spectrogram still need to be predictable. The max determines the
        # decibel cutoff, and the distance from the min must be large enough
        # that it triggers a clamp.
382
        spec = torch.rand(*shape, dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
383
384
385
386
387
388
        # Ensure each spectrogram has a min of 0 and a max of 1.
        spec -= spec.amin([-2, -1])[..., None, None]
        spec /= spec.amax([-2, -1])[..., None, None]
        # Expand the range to (0, 200) - wide enough to properly test clamping.
        spec *= 200

389
        decibels = F.amplitude_to_DB(spec, amplitude_mult, amin, db_mult, top_db=top_db)
dhthompson's avatar
dhthompson committed
390
391
        # Ensure the clamp was applied
        below_limit = decibels < 6.0205
392
393
        assert not below_limit.any(), "{} decibel values were below the expected cutoff:\n{}".format(
            below_limit.sum().item(), decibels
dhthompson's avatar
dhthompson committed
394
395
396
        )
        # Ensure it didn't over-clamp
        close_to_limit = decibels < 6.0207
397
        assert close_to_limit.any(), f"No values were close to the limit. Did it over-clamp?\n{decibels}"
dhthompson's avatar
dhthompson committed
398

399
400
401
402
    @parameterized.expand(
        list(itertools.product([(2, 1025, 400), (1, 201, 100)], [100], [0.0, 30.0], [1, 2], [0.33, 1.0]))
    )
    def test_mask_along_axis(self, shape, mask_param, mask_value, axis, p):
403
        specgram = torch.randn(*shape, dtype=self.dtype, device=self.device)
404
405
406
407
408

        if p != 1.0:
            mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis, p=p)
        else:
            mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)
dhthompson's avatar
dhthompson committed
409
410
411
412
413

        other_axis = 1 if axis == 2 else 2

        masked_columns = (mask_specgram == mask_value).sum(other_axis)
        num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
414
        num_masked_columns = torch.div(num_masked_columns, mask_specgram.size(0), rounding_mode="floor")
dhthompson's avatar
dhthompson committed
415

416
417
418
        if p != 1.0:
            mask_param = min(mask_param, int(specgram.shape[axis] * p))

dhthompson's avatar
dhthompson committed
419
420
421
        assert mask_specgram.size() == specgram.size()
        assert num_masked_columns < mask_param

422
423
    @parameterized.expand(list(itertools.product([100], [0.0, 30.0], [2, 3], [0.2, 1.0])))
    def test_mask_along_axis_iid(self, mask_param, mask_value, axis, p):
424
        specgrams = torch.randn(4, 2, 1025, 400, dtype=self.dtype, device=self.device)
dhthompson's avatar
dhthompson committed
425

426
427
428
429
        if p != 1.0:
            mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis, p=p)
        else:
            mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)
dhthompson's avatar
dhthompson committed
430
431
432
433
434
435

        other_axis = 2 if axis == 3 else 3

        masked_columns = (mask_specgrams == mask_value).sum(other_axis)
        num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)

436
437
438
        if p != 1.0:
            mask_param = min(mask_param, int(specgrams.shape[axis] * p))

dhthompson's avatar
dhthompson committed
439
440
        assert mask_specgrams.size() == specgrams.size()
        assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()
441

442
    @parameterized.expand(list(itertools.product([(2, 1025, 400), (1, 201, 100)], [100], [0.0, 30.0], [1, 2])))
443
444
445
446
447
448
449
450
451
452
453
454
455
    def test_mask_along_axis_preserve(self, shape, mask_param, mask_value, axis):
        """mask_along_axis should not alter original input Tensor

        Test is run 5 times to bound the probability of no masking occurring to 1e-10
        See https://github.com/pytorch/audio/issues/1478
        """
        for _ in range(5):
            specgram = torch.randn(*shape, dtype=self.dtype, device=self.device)
            specgram_copy = specgram.clone()
            F.mask_along_axis(specgram, mask_param, mask_value, axis)

            self.assertEqual(specgram, specgram_copy)

456
    @parameterized.expand(list(itertools.product([100], [0.0, 30.0], [2, 3])))
457
458
459
460
461
462
463
464
465
466
467
468
469
    def test_mask_along_axis_iid_preserve(self, mask_param, mask_value, axis):
        """mask_along_axis_iid should not alter original input Tensor

        Test is run 5 times to bound the probability of no masking occurring to 1e-10
        See https://github.com/pytorch/audio/issues/1478
        """
        for _ in range(5):
            specgrams = torch.randn(4, 2, 1025, 400, dtype=self.dtype, device=self.device)
            specgrams_copy = specgrams.clone()
            F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)

            self.assertEqual(specgrams, specgrams_copy)

470
471
472
473
474
475
476
477
    @parameterized.expand(
        list(
            itertools.product(
                ["sinc_interpolation", "kaiser_window"],
                [16000, 44100],
            )
        )
    )
478
479
480
481
482
483
    def test_resample_identity(self, resampling_method, sample_rate):
        waveform = get_whitenoise(sample_rate=sample_rate, duration=1)

        resampled = F.resample(waveform, sample_rate, sample_rate)
        self.assertEqual(waveform, resampled)

484
485
486
    @parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
    def test_resample_waveform_upsample_size(self, resampling_method):
        sr = 16000
487
488
489
490
        waveform = get_whitenoise(
            sample_rate=sr,
            duration=0.5,
        )
491
492
493
494
495
496
        upsampled = F.resample(waveform, sr, sr * 2, resampling_method=resampling_method)
        assert upsampled.size(-1) == waveform.size(-1) * 2

    @parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
    def test_resample_waveform_downsample_size(self, resampling_method):
        sr = 16000
497
498
499
500
        waveform = get_whitenoise(
            sample_rate=sr,
            duration=0.5,
        )
501
502
503
504
505
506
        downsampled = F.resample(waveform, sr, sr // 2, resampling_method=resampling_method)
        assert downsampled.size(-1) == waveform.size(-1) // 2

    @parameterized.expand([("sinc_interpolation"), ("kaiser_window")])
    def test_resample_waveform_identity_size(self, resampling_method):
        sr = 16000
507
508
509
510
        waveform = get_whitenoise(
            sample_rate=sr,
            duration=0.5,
        )
511
512
513
        resampled = F.resample(waveform, sr, sr, resampling_method=resampling_method)
        assert resampled.size(-1) == waveform.size(-1)

514
515
516
517
518
519
520
521
    @parameterized.expand(
        list(
            itertools.product(
                ["sinc_interpolation", "kaiser_window"],
                list(range(1, 20)),
            )
        )
    )
522
523
524
    def test_resample_waveform_downsample_accuracy(self, resampling_method, i):
        self._test_resample_waveform_accuracy(down_scale_factor=i * 2, resampling_method=resampling_method)

525
526
527
528
529
530
531
532
    @parameterized.expand(
        list(
            itertools.product(
                ["sinc_interpolation", "kaiser_window"],
                list(range(1, 20)),
            )
        )
    )
533
534
535
    def test_resample_waveform_upsample_accuracy(self, resampling_method, i):
        self._test_resample_waveform_accuracy(up_scale_factor=1.0 + i / 20.0, resampling_method=resampling_method)

536
537
    @nested_params([0.5, 1.01, 1.3])
    def test_phase_vocoder_shape(self, rate):
538
539
540
541
542
543
        """Verify the output shape of phase vocoder"""
        hop_length = 256
        num_freq = 1025
        num_frames = 400
        batch_size = 2

544
        spec = torch.randn(batch_size, num_freq, num_frames, dtype=self.complex_dtype, device=self.device)
545

546
        phase_advance = torch.linspace(0, np.pi * hop_length, num_freq, dtype=self.dtype, device=self.device)[..., None]
547
548
549
550
551

        spec_stretch = F.phase_vocoder(spec, rate=rate, phase_advance=phase_advance)

        assert spec.dim() == spec_stretch.dim()
        expected_shape = torch.Size([batch_size, num_freq, int(np.ceil(num_frames / rate))])
552
        output_shape = spec_stretch.shape
553
554
        assert output_shape == expected_shape

yangarbiter's avatar
yangarbiter committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    @parameterized.expand(
        [
            # words
            ["", "", 0],  # equal
            ["abc", "abc", 0],
            ["ᑌᑎIᑕO", "ᑌᑎIᑕO", 0],
            ["abc", "", 3],  # deletion
            ["aa", "aaa", 1],
            ["aaa", "aa", 1],
            ["ᑌᑎI", "ᑌᑎIᑕO", 2],
            ["aaa", "aba", 1],  # substitution
            ["aba", "aaa", 1],
            ["aba", "   ", 3],
            ["abc", "bcd", 2],  # mix deletion and substitution
            ["0ᑌᑎI", "ᑌᑎIᑕO", 3],
            # sentences
            [["hello", "", "Tᕮ᙭T"], ["hello", "", "Tᕮ᙭T"], 0],  # equal
            [[], [], 0],
            [["hello", "world"], ["hello", "world", "!"], 1],  # deletion
            [["hello", "world"], ["world"], 1],
            [["hello", "world"], [], 2],
576
577
578
579
580
581
582
            [
                [
                    "Tᕮ᙭T",
                ],
                ["world"],
                1,
            ],  # substitution
yangarbiter's avatar
yangarbiter committed
583
584
585
586
587
588
589
590
591
592
593
            [["Tᕮ᙭T", "XD"], ["world", "hello"], 2],
            [["", "XD"], ["world", ""], 2],
            ["aba", "   ", 3],
            [["hello", "world"], ["world", "hello", "!"], 2],  # mix deletion and substitution
            [["Tᕮ᙭T", "world", "LOL", "XD"], ["world", "hello", "ʕ•́ᴥ•̀ʔっ"], 3],
        ]
    )
    def test_simple_case_edit_distance(self, seq1, seq2, distance):
        assert F.edit_distance(seq1, seq2) == distance
        assert F.edit_distance(seq2, seq1) == distance

594
595
596
597
598
599
600
601
602
    @nested_params(
        [-4, -2, 0, 2, 4],
    )
    def test_pitch_shift_shape(self, n_steps):
        sample_rate = 16000
        waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device)
        waveform_shift = F.pitch_shift(waveform, sample_rate, n_steps)
        assert waveform.size() == waveform_shift.size()

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    def test_rnnt_loss_basic_backward(self):
        logits, targets, logit_lengths, target_lengths = rnnt_utils.get_basic_data(self.device)
        loss = F.rnnt_loss(logits, targets, logit_lengths, target_lengths)
        loss.backward()

    def test_rnnt_loss_basic_forward_no_grad(self):
        """In early stage, calls to `rnnt_loss` resulted in segmentation fault when
        `logits` have `requires_grad = False`. This test makes sure that this no longer
        occurs and the functional call runs without error.

        See https://github.com/pytorch/audio/pull/1707
        """
        logits, targets, logit_lengths, target_lengths = rnnt_utils.get_basic_data(self.device)
        logits.requires_grad_(False)
        F.rnnt_loss(logits, targets, logit_lengths, target_lengths)

619
620
621
622
623
624
625
626
    @parameterized.expand(
        [
            (rnnt_utils.get_B1_T2_U3_D5_data, torch.float32, 1e-6, 1e-2),
            (rnnt_utils.get_B2_T4_U3_D3_data, torch.float32, 1e-6, 1e-2),
            (rnnt_utils.get_B1_T2_U3_D5_data, torch.float16, 1e-3, 1e-2),
            (rnnt_utils.get_B2_T4_U3_D3_data, torch.float16, 1e-3, 1e-2),
        ]
    )
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    def test_rnnt_loss_costs_and_gradients(self, data_func, dtype, atol, rtol):
        data, ref_costs, ref_gradients = data_func(
            dtype=dtype,
            device=self.device,
        )
        self._test_costs_and_gradients(
            data=data,
            ref_costs=ref_costs,
            ref_gradients=ref_gradients,
            atol=atol,
            rtol=rtol,
        )

    def test_rnnt_loss_costs_and_gradients_random_data_with_numpy_fp32(self):
        seed = 777
        for i in range(5):
            data = rnnt_utils.get_random_data(dtype=torch.float32, device=self.device, seed=(seed + i))
            ref_costs, ref_gradients = rnnt_utils.compute_with_numpy_transducer(data=data)
645
            self._test_costs_and_gradients(data=data, ref_costs=ref_costs, ref_gradients=ref_gradients)
646

647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    def test_psd(self):
        """Verify the ``F.psd`` method by the numpy implementation.
        Given the multi-channel complex-valued spectrum as the input,
        the output of ``F.psd`` should be identical to that of ``psd_numpy``.
        """
        channel = 4
        n_fft_bin = 10
        frame = 5
        specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
        psd = beamform_utils.psd_numpy(specgram)
        psd_audio = F.psd(torch.tensor(specgram, dtype=self.complex_dtype, device=self.device))
        self.assertEqual(torch.tensor(psd, dtype=self.complex_dtype, device=self.device), psd_audio)

    @parameterized.expand(
        [
            (True,),
            (False,),
        ]
    )
    def test_psd_with_mask(self, normalize: bool):
        """Verify the ``F.psd`` method by the numpy implementation.
        Given the multi-channel complex-valued spectrum and the single-channel real-valued mask
        as the inputs, the output of ``F.psd`` should be identical to that of ``psd_numpy``.
        """
        channel = 4
        n_fft_bin = 10
        frame = 5
        specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
        mask = np.random.random((n_fft_bin, frame))
        psd = beamform_utils.psd_numpy(specgram, mask, normalize)
        psd_audio = F.psd(
            torch.tensor(specgram, dtype=self.complex_dtype, device=self.device),
            torch.tensor(mask, dtype=self.dtype, device=self.device),
            normalize=normalize,
        )
        self.assertEqual(torch.tensor(psd, dtype=self.complex_dtype, device=self.device), psd_audio)

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
    def test_mvdr_weights_souden(self):
        """Verify ``F.mvdr_weights_souden`` method by numpy implementation.
        Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
        and an integer indicating the reference channel, ``F.mvdr_weights_souden`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_souden_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = 0
        psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_souden_numpy(psd_s, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_souden(
            torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            reference_channel,
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

    def test_mvdr_weights_souden_with_tensor(self):
        """Verify ``F.mvdr_weights_souden`` method by numpy implementation.
        Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
        and a one-hot Tensor indicating the reference channel, ``F.mvdr_weights_souden`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_souden_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = np.zeros(channel)
        reference_channel[0] = 1
        psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_souden_numpy(psd_s, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_souden(
            torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

    def test_mvdr_weights_rtf(self):
        """Verify ``F.mvdr_weights_rtf`` method by numpy implementation.
        Given the relative transfer function (RTF) of target speech (Tensor of dimension `(..., freq, channel)`),
        the PSD matrix of noise (Tensor of dimension `(..., freq, channel, channel)`), and an integer
        indicating the reference channel as inputs, ``F.mvdr_weights_rtf`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_rtf_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = 0
        rtf = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_rtf_numpy(rtf, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_rtf(
            torch.tensor(rtf, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            reference_channel,
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

    def test_mvdr_weights_rtf_with_tensor(self):
        """Verify ``F.mvdr_weights_rtf`` method by numpy implementation.
        Given the relative transfer function (RTF) of target speech (Tensor of dimension `(..., freq, channel)`),
        the PSD matrix of noise (Tensor of dimension `(..., freq, channel, channel)`), and a one-hot Tensor
        indicating the reference channel as inputs, ``F.mvdr_weights_rtf`` outputs the mvdr weights
        (Tensor of dimension `(..., freq, channel)`), which should be close to the output of
        ``mvdr_weights_rtf_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = np.zeros(channel)
        reference_channel[0] = 1
        rtf = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        beamform_weights = beamform_utils.mvdr_weights_rtf_numpy(rtf, psd_n, reference_channel)
        beamform_weights_audio = F.mvdr_weights_rtf(
            torch.tensor(rtf, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
780
781
782
783
784
785
786
787
        )
        self.assertEqual(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            beamform_weights_audio,
            atol=1e-3,
            rtol=1e-6,
        )

788
789
790
791
792
793
794
795
796
797
798
799
800
801
    def test_rtf_evd(self):
        """Verify ``F.rtf_evd`` method by the numpy implementation.
        Given the multi-channel complex-valued spectrum, we compute the PSD matrix as the input,
        ``F.rtf_evd`` outputs the relative transfer function (RTF) (Tensor of dimension `(..., freq, channel)`),
        which should be identical to the output of ``rtf_evd_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        specgram = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        psd = np.einsum("fc,fd->fcd", specgram.conj(), specgram)
        rtf = beamform_utils.rtf_evd_numpy(psd)
        rtf_audio = F.rtf_evd(torch.tensor(psd, dtype=self.complex_dtype, device=self.device))
        self.assertEqual(torch.tensor(rtf, dtype=self.complex_dtype, device=self.device), rtf_audio)

802
803
    @parameterized.expand(
        [
804
805
806
            (1, True),
            (2, False),
            (3, True),
807
808
        ]
    )
809
    def test_rtf_power(self, n_iter, diagonal_loading):
810
811
812
813
814
815
816
817
818
819
820
        """Verify ``F.rtf_power`` method by numpy implementation.
        Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
        an integer indicating the reference channel, and an integer for number of iterations, ``F.rtf_power``
        outputs the relative transfer function (RTF) (Tensor of dimension `(..., freq, channel)`),
        which should be identical to the output of ``rtf_power_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = 0
        psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
821
        rtf = beamform_utils.rtf_power_numpy(psd_s, psd_n, reference_channel, n_iter, diagonal_loading)
822
823
824
825
826
        rtf_audio = F.rtf_power(
            torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            reference_channel,
            n_iter,
827
            diagonal_loading=diagonal_loading,
828
829
830
831
832
        )
        self.assertEqual(torch.tensor(rtf, dtype=self.complex_dtype, device=self.device), rtf_audio)

    @parameterized.expand(
        [
833
834
835
            (1, True),
            (2, False),
            (3, True),
836
837
        ]
    )
838
    def test_rtf_power_with_tensor(self, n_iter, diagonal_loading):
839
840
841
842
843
844
845
846
847
848
849
850
        """Verify ``F.rtf_power`` method by numpy implementation.
        Given the PSD matrices of target speech and noise (Tensor of dimension `(..., freq, channel, channel`)
        a one-hot Tensor indicating the reference channel, and an integer for number of iterations, ``F.rtf_power``
        outputs the relative transfer function (RTF) (Tensor of dimension `(..., freq, channel)`),
        which should be identical to the output of ``rtf_power_numpy``.
        """
        n_fft_bin = 10
        channel = 4
        reference_channel = np.zeros(channel)
        reference_channel[0] = 1
        psd_s = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
        psd_n = np.random.random((n_fft_bin, channel, channel)) + np.random.random((n_fft_bin, channel, channel)) * 1j
851
        rtf = beamform_utils.rtf_power_numpy(psd_s, psd_n, reference_channel, n_iter, diagonal_loading)
852
853
854
855
856
        rtf_audio = F.rtf_power(
            torch.tensor(psd_s, dtype=self.complex_dtype, device=self.device),
            torch.tensor(psd_n, dtype=self.complex_dtype, device=self.device),
            torch.tensor(reference_channel, dtype=self.dtype, device=self.device),
            n_iter,
857
            diagonal_loading=diagonal_loading,
858
859
860
        )
        self.assertEqual(torch.tensor(rtf, dtype=self.complex_dtype, device=self.device), rtf_audio)

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
    def test_apply_beamforming(self):
        """Verify ``F.apply_beamforming`` method by numpy implementation.
        Given the multi-channel complex-valued spectrum and complex-valued
        beamforming weights (Tensor of dimension `(..., freq, channel)`) as inputs,
        ``F.apply_beamforming`` outputs the single-channel complex-valued enhanced
        spectrum, which should be identical to the output of ``apply_beamforming_numpy``.
        """
        channel = 4
        n_fft_bin = 10
        frame = 5
        beamform_weights = np.random.random((n_fft_bin, channel)) + np.random.random((n_fft_bin, channel)) * 1j
        specgram = np.random.random((channel, n_fft_bin, frame)) + np.random.random((channel, n_fft_bin, frame)) * 1j
        specgram_enhanced = beamform_utils.apply_beamforming_numpy(beamform_weights, specgram)
        specgram_enhanced_audio = F.apply_beamforming(
            torch.tensor(beamform_weights, dtype=self.complex_dtype, device=self.device),
            torch.tensor(specgram, dtype=self.complex_dtype, device=self.device),
        )
        self.assertEqual(
            torch.tensor(specgram_enhanced, dtype=self.complex_dtype, device=self.device), specgram_enhanced_audio
        )

882
883

class FunctionalCPUOnly(TestBaseMixin):
884
    def test_melscale_fbanks_no_warning_high_n_freq(self):
885
886
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
887
            F.melscale_fbanks(288, 0, 8000, 128, 16000)
888
889
        assert len(w) == 0

890
    def test_melscale_fbanks_no_warning_low_n_mels(self):
891
892
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
893
            F.melscale_fbanks(201, 0, 8000, 89, 16000)
894
895
        assert len(w) == 0

896
    def test_melscale_fbanks_warning(self):
897
898
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
899
            F.melscale_fbanks(201, 0, 8000, 128, 16000)
900
        assert len(w) == 1