test_transforms.py 20.3 KB
Newer Older
1
import math
2
import os
3
import unittest
4

David Pollack's avatar
David Pollack committed
5
6
7
import torch
import torchaudio
import torchaudio.transforms as transforms
Vincent QB's avatar
Vincent QB committed
8
import torchaudio.functional as F
David Pollack's avatar
David Pollack committed
9

10
from common_utils import AudioBackendScope, BACKENDS, create_temp_assets_dir
11
12


13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
RUN_CUDA = torch.cuda.is_available()
print("Run test with cuda:", RUN_CUDA)


def _test_script_module(f, tensor, *args, **kwargs):

    py_method = f(*args, **kwargs)
    jit_method = torch.jit.script(py_method)

    py_out = py_method(tensor)
    jit_out = jit_method(tensor)

    assert torch.allclose(jit_out, py_out)

    if RUN_CUDA:

        tensor = tensor.to("cuda")

        py_method = py_method.cuda()
        jit_method = torch.jit.script(py_method)

        py_out = py_method(tensor)
        jit_out = jit_method(tensor)

        assert torch.allclose(jit_out, py_out)

Soumith Chintala's avatar
Soumith Chintala committed
39

David Pollack's avatar
David Pollack committed
40
41
class Tester(unittest.TestCase):

42
    # create a sinewave signal for testing
43
    sample_rate = 16000
David Pollack's avatar
David Pollack committed
44
    freq = 440
45
    volume = .3
46
47
48
    waveform = (torch.cos(2 * math.pi * torch.arange(0, 4 * sample_rate).float() * freq / sample_rate))
    waveform.unsqueeze_(0)  # (1, 64000)
    waveform = (waveform * volume * 2**31).long()
49
    # file for stereo stft test
50
    test_dirpath, test_dir = create_temp_assets_dir()
51
    test_filepath = os.path.join(test_dirpath, 'assets',
52
                                 'steam-train-whistle-daniel_simon.wav')
David Pollack's avatar
David Pollack committed
53

54
55
56
57
58
    def scale(self, waveform, factor=float(2**31)):
        # scales a waveform by a factor
        if not waveform.is_floating_point():
            waveform = waveform.to(torch.get_default_dtype())
        return waveform / factor
59

60
61
62
63
    def test_scriptmodule_Spectrogram(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(transforms.Spectrogram, tensor)

64
65
66
67
    def test_scriptmodule_GriffinLim(self):
        tensor = torch.rand((1, 201, 6))
        _test_script_module(transforms.GriffinLim, tensor, length=1000, rand_init=False)

David Pollack's avatar
David Pollack committed
68
69
70
71
    def test_mu_law_companding(self):

        quantization_channels = 256

72
73
74
        waveform = self.waveform.clone()
        waveform /= torch.abs(waveform).max()
        self.assertTrue(waveform.min() >= -1. and waveform.max() <= 1.)
David Pollack's avatar
David Pollack committed
75

76
77
        waveform_mu = transforms.MuLawEncoding(quantization_channels)(waveform)
        self.assertTrue(waveform_mu.min() >= 0. and waveform_mu.max() <= quantization_channels)
David Pollack's avatar
David Pollack committed
78

79
        waveform_exp = transforms.MuLawDecoding(quantization_channels)(waveform_mu)
80
        self.assertTrue(waveform_exp.min() >= -1. and waveform_exp.max() <= 1.)
81

82
83
84
85
    def test_scriptmodule_AmplitudeToDB(self):
        spec = torch.rand((6, 201))
        _test_script_module(transforms.AmplitudeToDB, spec)

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    def test_batch_AmplitudeToDB(self):
        spec = torch.rand((6, 201))

        # Single then transform then batch
        expected = transforms.AmplitudeToDB()(spec).repeat(3, 1, 1)

        # Batch then transform
        computed = transforms.AmplitudeToDB()(spec.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

    def test_AmplitudeToDB(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        mag_to_db_transform = transforms.AmplitudeToDB('magnitude', 80.)
        power_to_db_transform = transforms.AmplitudeToDB('power', 80.)

        mag_to_db_torch = mag_to_db_transform(torch.abs(waveform))
        power_to_db_torch = power_to_db_transform(torch.pow(waveform, 2))

        self.assertTrue(torch.allclose(mag_to_db_torch, power_to_db_torch))

109
110
111
112
    def test_scriptmodule_MelScale(self):
        spec_f = torch.rand((1, 6, 201))
        _test_script_module(transforms.MelScale, spec_f)

113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def test_melscale_load_save(self):
        specgram = torch.ones(1, 1000, 100)
        melscale_transform = transforms.MelScale()
        melscale_transform(specgram)

        melscale_transform_copy = transforms.MelScale(n_stft=1000)
        melscale_transform_copy.load_state_dict(melscale_transform.state_dict())

        fb = melscale_transform.fb
        fb_copy = melscale_transform_copy.fb

        self.assertEqual(fb_copy.size(), (1000, 128))
        self.assertTrue(torch.allclose(fb, fb_copy))

127
128
129
130
    def test_scriptmodule_MelSpectrogram(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(transforms.MelSpectrogram, tensor)

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    def test_melspectrogram_load_save(self):
        waveform = self.waveform.float()
        mel_spectrogram_transform = transforms.MelSpectrogram()
        mel_spectrogram_transform(waveform)

        mel_spectrogram_transform_copy = transforms.MelSpectrogram()
        mel_spectrogram_transform_copy.load_state_dict(mel_spectrogram_transform.state_dict())

        window = mel_spectrogram_transform.spectrogram.window
        window_copy = mel_spectrogram_transform_copy.spectrogram.window

        fb = mel_spectrogram_transform.mel_scale.fb
        fb_copy = mel_spectrogram_transform_copy.mel_scale.fb

        self.assertTrue(torch.allclose(window, window_copy))
        # the default for n_fft = 400 and n_mels = 128
        self.assertEqual(fb_copy.size(), (201, 128))
        self.assertTrue(torch.allclose(fb, fb_copy))

150
    def test_mel2(self):
PCerles's avatar
PCerles committed
151
        top_db = 80.
152
        s2db = transforms.AmplitudeToDB('power', top_db)
PCerles's avatar
PCerles committed
153

154
155
        waveform = self.waveform.clone()  # (1, 16000)
        waveform_scaled = self.scale(waveform)  # (1, 16000)
156
        mel_transform = transforms.MelSpectrogram()
157
        # check defaults
158
        spectrogram_torch = s2db(mel_transform(waveform_scaled))  # (1, 128, 321)
159
        self.assertTrue(spectrogram_torch.dim() == 3)
PCerles's avatar
PCerles committed
160
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
161
        self.assertEqual(spectrogram_torch.size(1), mel_transform.n_mels)
162
        # check correctness of filterbank conversion matrix
163
164
        self.assertTrue(mel_transform.mel_scale.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform.mel_scale.fb.sum(1).ge(0.).all())
165
        # check options
166
167
        kwargs = {'window_fn': torch.hamming_window, 'pad': 10, 'win_length': 500,
                  'hop_length': 125, 'n_fft': 800, 'n_mels': 50}
168
        mel_transform2 = transforms.MelSpectrogram(**kwargs)
169
        spectrogram2_torch = s2db(mel_transform2(waveform_scaled))  # (1, 50, 513)
170
        self.assertTrue(spectrogram2_torch.dim() == 3)
PCerles's avatar
PCerles committed
171
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
172
173
174
        self.assertEqual(spectrogram2_torch.size(1), mel_transform2.n_mels)
        self.assertTrue(mel_transform2.mel_scale.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform2.mel_scale.fb.sum(1).ge(0.).all())
175
        # check on multi-channel audio
176
177
        x_stereo, sr_stereo = torchaudio.load(self.test_filepath)  # (2, 278756), 44100
        spectrogram_stereo = s2db(mel_transform(x_stereo))  # (2, 128, 1394)
178
179
        self.assertTrue(spectrogram_stereo.dim() == 3)
        self.assertTrue(spectrogram_stereo.size(0) == 2)
PCerles's avatar
PCerles committed
180
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
181
        self.assertEqual(spectrogram_stereo.size(1), mel_transform.n_mels)
182
        # check filterbank matrix creation
183
184
        fb_matrix_transform = transforms.MelScale(
            n_mels=100, sample_rate=16000, f_min=0., f_max=None, n_stft=400)
185
186
187
        self.assertTrue(fb_matrix_transform.fb.sum(1).le(1.).all())
        self.assertTrue(fb_matrix_transform.fb.sum(1).ge(0.).all())
        self.assertEqual(fb_matrix_transform.fb.size(), (400, 100))
Soumith Chintala's avatar
Soumith Chintala committed
188

189
190
191
192
    def test_scriptmodule_MFCC(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(transforms.MFCC, tensor)

PCerles's avatar
PCerles committed
193
    def test_mfcc(self):
194
195
        audio_orig = self.waveform.clone()
        audio_scaled = self.scale(audio_orig)  # (1, 16000)
PCerles's avatar
PCerles committed
196
197
198
199

        sample_rate = 16000
        n_mfcc = 40
        n_mels = 128
200
        mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate,
PCerles's avatar
PCerles committed
201
202
203
                                                    n_mfcc=n_mfcc,
                                                    norm='ortho')
        # check defaults
204
        torch_mfcc = mfcc_transform(audio_scaled)  # (1, 40, 321)
PCerles's avatar
PCerles committed
205
        self.assertTrue(torch_mfcc.dim() == 3)
206
207
        self.assertTrue(torch_mfcc.shape[1] == n_mfcc)
        self.assertTrue(torch_mfcc.shape[2] == 321)
PCerles's avatar
PCerles committed
208
        # check melkwargs are passed through
209
210
        melkwargs = {'win_length': 200}
        mfcc_transform2 = torchaudio.transforms.MFCC(sample_rate=sample_rate,
PCerles's avatar
PCerles committed
211
212
213
                                                     n_mfcc=n_mfcc,
                                                     norm='ortho',
                                                     melkwargs=melkwargs)
214
215
        torch_mfcc2 = mfcc_transform2(audio_scaled)  # (1, 40, 641)
        self.assertTrue(torch_mfcc2.shape[2] == 641)
PCerles's avatar
PCerles committed
216
217

        # check norms work correctly
218
        mfcc_transform_norm_none = torchaudio.transforms.MFCC(sample_rate=sample_rate,
PCerles's avatar
PCerles committed
219
220
                                                              n_mfcc=n_mfcc,
                                                              norm=None)
221
        torch_mfcc_norm_none = mfcc_transform_norm_none(audio_scaled)  # (1, 40, 321)
PCerles's avatar
PCerles committed
222
223

        norm_check = torch_mfcc.clone()
224
225
        norm_check[:, 0, :] *= math.sqrt(n_mels) * 2
        norm_check[:, 1:, :] *= math.sqrt(n_mels / 2) * 2
PCerles's avatar
PCerles committed
226
227
228

        self.assertTrue(torch_mfcc_norm_none.allclose(norm_check))

Oktai Tatanov's avatar
Oktai Tatanov committed
229
230
    def test_scriptmodule_Resample(self):
        tensor = torch.rand((2, 1000))
231
232
        sample_rate = 100.
        sample_rate_2 = 50.
Oktai Tatanov's avatar
Oktai Tatanov committed
233

234
        _test_script_module(transforms.Resample, tensor, sample_rate, sample_rate_2)
Oktai Tatanov's avatar
Oktai Tatanov committed
235

Vincent QB's avatar
Vincent QB committed
236
237
238
239
240
241
242
243
244
245
246
247
    def test_batch_Resample(self):
        waveform = torch.randn(2, 2786)

        # Single then transform then batch
        expected = transforms.Resample()(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = transforms.Resample()(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

248
249
250
251
    def test_scriptmodule_ComplexNorm(self):
        tensor = torch.rand((1, 2, 201, 2))
        _test_script_module(transforms.ComplexNorm, tensor)

jamarshon's avatar
jamarshon committed
252
253
    def test_resample_size(self):
        input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
254
        waveform, sample_rate = torchaudio.load(input_path)
jamarshon's avatar
jamarshon committed
255
256
257
258
259

        upsample_rate = sample_rate * 2
        downsample_rate = sample_rate // 2
        invalid_resample = torchaudio.transforms.Resample(sample_rate, upsample_rate, resampling_method='foo')

260
        self.assertRaises(ValueError, invalid_resample, waveform)
jamarshon's avatar
jamarshon committed
261
262
263

        upsample_resample = torchaudio.transforms.Resample(
            sample_rate, upsample_rate, resampling_method='sinc_interpolation')
264
        up_sampled = upsample_resample(waveform)
jamarshon's avatar
jamarshon committed
265
266

        # we expect the upsampled signal to have twice as many samples
267
        self.assertTrue(up_sampled.size(-1) == waveform.size(-1) * 2)
jamarshon's avatar
jamarshon committed
268
269
270

        downsample_resample = torchaudio.transforms.Resample(
            sample_rate, downsample_rate, resampling_method='sinc_interpolation')
271
        down_sampled = downsample_resample(waveform)
jamarshon's avatar
jamarshon committed
272
273

        # we expect the downsampled signal to have half as many samples
274
        self.assertTrue(down_sampled.size(-1) == waveform.size(-1) // 2)
PCerles's avatar
PCerles committed
275

Vincent QB's avatar
Vincent QB committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    def test_compute_deltas(self):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)
        transform = transforms.ComputeDeltas(win_length=win_length)
        computed = transform(specgram)
        self.assertTrue(computed.shape == specgram.shape, (computed.shape, specgram.shape))

    def test_compute_deltas_transform_same_as_functional(self, atol=1e-6, rtol=1e-8):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)

        transform = transforms.ComputeDeltas(win_length=win_length)
        computed_transform = transform(specgram)

        computed_functional = F.compute_deltas(specgram, win_length=win_length)
        torch.testing.assert_allclose(computed_functional, computed_transform, atol=atol, rtol=rtol)

    def test_compute_deltas_twochannel(self):
        specgram = torch.tensor([1., 2., 3., 4.]).repeat(1, 2, 1)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
                                  [0.5, 1.0, 1.0, 0.5]]])
        transform = transforms.ComputeDeltas()
        computed = transform(specgram)
        self.assertTrue(computed.shape == specgram.shape, (computed.shape, specgram.shape))

Vincent QB's avatar
Vincent QB committed
307
308
309
310
311
312
313
314
315
316
317
318
319
    def test_batch_MelScale(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = transforms.MelScale()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.MelScale()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

moto's avatar
moto committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    def test_batch_InverseMelScale(self):
        n_fft = 8
        n_mels = 32
        n_stft = 5
        mel_spec = torch.randn(2, n_mels, 32) ** 2

        # Single then transform then batch
        expected = transforms.InverseMelScale(n_stft, n_mels)(mel_spec).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.InverseMelScale(n_stft, n_mels)(mel_spec.repeat(3, 1, 1, 1))

        # shape = (3, 2, n_mels, 32)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))

        # Because InverseMelScale runs SGD on randomly initialized values so they do not yield
        # exactly same result. For this reason, tolerance is very relaxed here.
        self.assertTrue(torch.allclose(computed, expected, atol=1.0))

Vincent QB's avatar
Vincent QB committed
339
340
341
342
343
344
345
346
347
348
349
350
351
    def test_batch_compute_deltas(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = transforms.ComputeDeltas()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.ComputeDeltas()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

352
353
354
355
356
357
358
359
    def test_scriptmodule_MuLawEncoding(self):
        tensor = torch.rand((1, 10))
        _test_script_module(transforms.MuLawEncoding, tensor)

    def test_scriptmodule_MuLawDecoding(self):
        tensor = torch.rand((1, 10))
        _test_script_module(transforms.MuLawDecoding, tensor)

Vincent QB's avatar
Vincent QB committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    def test_batch_mulaw(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        waveform_encoded = transforms.MuLawEncoding()(waveform)
        expected = waveform_encoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        waveform_batched = waveform.unsqueeze(0).repeat(3, 1, 1)
        computed = transforms.MuLawEncoding()(waveform_batched)

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

        # Single then transform then batch
        waveform_decoded = transforms.MuLawDecoding()(waveform_encoded)
        expected = waveform_decoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        computed = transforms.MuLawDecoding()(computed)

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

386
387
388
389
390
391
392
393
394
395
396
397
    def test_batch_spectrogram(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        # Single then transform then batch
        expected = transforms.Spectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.Spectrogram()(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

Vincent QB's avatar
Vincent QB committed
398
399
400
401
402
403
404
405
406
407
408
409
    def test_batch_melspectrogram(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        # Single then transform then batch
        expected = transforms.MelSpectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.MelSpectrogram()(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

410
411
    @unittest.skipIf("sox" not in BACKENDS, "sox not available")
    @AudioBackendScope("sox")
Vincent QB's avatar
Vincent QB committed
412
    def test_batch_mfcc(self):
413
414
415
416
        test_filepath = os.path.join(
            self.test_dirpath, 'assets', 'steam-train-whistle-daniel_simon.mp3'
        )
        waveform, sample_rate = torchaudio.load(test_filepath)
Vincent QB's avatar
Vincent QB committed
417
418
419
420
421
422
423
424
425
426

        # Single then transform then batch
        expected = transforms.MFCC()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.MFCC()(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected, atol=1e-5))

427
428
429
430
431
    def test_scriptmodule_TimeStretch(self):
        n_freq = 400
        hop_length = 512
        fixed_rate = 1.3
        tensor = torch.rand((10, 2, n_freq, 10, 2))
432
        _test_script_module(transforms.TimeStretch, tensor, n_freq=n_freq, hop_length=hop_length, fixed_rate=fixed_rate)
433

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    def test_batch_TimeStretch(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        kwargs = {
            'n_fft': 2048,
            'hop_length': 512,
            'win_length': 2048,
            'window': torch.hann_window(2048),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
        rate = 2

        complex_specgrams = torch.stft(waveform, **kwargs)

        # Single then transform then batch
        expected = transforms.TimeStretch(fixed_rate=rate,
                                          n_freq=1025,
                                          hop_length=512)(complex_specgrams).repeat(3, 1, 1, 1, 1)

        # Batch then transform
        computed = transforms.TimeStretch(fixed_rate=rate,
                                          n_freq=1025,
                                          hop_length=512)(complex_specgrams.repeat(3, 1, 1, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected, atol=1e-5))

Tomás Osório's avatar
Tomás Osório committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    def test_batch_Fade(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)
        fade_in_len = 3000
        fade_out_len = 3000

        # Single then transform then batch
        expected = transforms.Fade(fade_in_len, fade_out_len)(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = transforms.Fade(fade_in_len, fade_out_len)(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

    def test_scriptmodule_Fade(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)
        fade_in_len = 3000
        fade_out_len = 3000

        _test_script_module(transforms.Fade, waveform, fade_in_len, fade_out_len)

485
486
    def test_scriptmodule_FrequencyMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
487
        _test_script_module(transforms.FrequencyMasking, tensor, freq_mask_param=60, iid_masks=False)
488
489
490

    def test_scriptmodule_TimeMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
491
        _test_script_module(transforms.TimeMasking, tensor, time_mask_param=30, iid_masks=False)
492

Tomás Osório's avatar
Tomás Osório committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    def test_scriptmodule_Vol(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        _test_script_module(transforms.Vol, waveform, 1.1)

    def test_batch_Vol(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        # Single then transform then batch
        expected = transforms.Vol(gain=1.1)(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = transforms.Vol(gain=1.1)(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

Vincent QB's avatar
Vincent QB committed
510

David Pollack's avatar
David Pollack committed
511
512
if __name__ == '__main__':
    unittest.main()