test_transforms.py 7.37 KB
Newer Older
1
from __future__ import print_function
2
import os
David Pollack's avatar
David Pollack committed
3
4
5
6
7
8
import torch
import torchaudio
import torchaudio.transforms as transforms
import numpy as np
import unittest

Soumith Chintala's avatar
Soumith Chintala committed
9

David Pollack's avatar
David Pollack committed
10
11
class Tester(unittest.TestCase):

12
    # create a sinewave signal for testing
David Pollack's avatar
David Pollack committed
13
14
    sr = 16000
    freq = 440
15
    volume = .3
16
    sig = (torch.cos(2 * np.pi * torch.arange(0, 4 * sr).float() * freq / sr))
17
    sig.unsqueeze_(1)  # (64000, 1)
Soumith Chintala's avatar
Soumith Chintala committed
18
    sig = (sig * volume * 2**31).long()
19
20
21
22
    # file for stereo stft test
    test_dirpath = os.path.dirname(os.path.realpath(__file__))
    test_filepath = os.path.join(test_dirpath, "assets",
                                 "steam-train-whistle-daniel_simon.mp3")
David Pollack's avatar
David Pollack committed
23
24
25
26
27

    def test_scale(self):

        audio_orig = self.sig.clone()
        result = transforms.Scale()(audio_orig)
28
        self.assertTrue(result.min() >= -1. and result.max() <= 1.)
David Pollack's avatar
David Pollack committed
29

Soumith Chintala's avatar
Soumith Chintala committed
30
31
        maxminmax = np.abs(
            [audio_orig.min(), audio_orig.max()]).max().astype(np.float)
David Pollack's avatar
David Pollack committed
32
33
        result = transforms.Scale(factor=maxminmax)(audio_orig)
        self.assertTrue((result.min() == -1. or result.max() == 1.) and
34
                        result.min() >= -1. and result.max() <= 1.)
David Pollack's avatar
David Pollack committed
35

36
        repr_test = transforms.Scale()
37
        self.assertTrue(repr_test.__repr__())
38

David Pollack's avatar
David Pollack committed
39
40
41
42
43
44
    def test_pad_trim(self):

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 1.2)

45
46
        result = transforms.PadTrim(max_len=length_new, channels_first=False)(audio_orig)
        self.assertEqual(result.size(0), length_new)
David Pollack's avatar
David Pollack committed
47

48
49
50
        result = transforms.PadTrim(max_len=length_new, channels_first=True)(audio_orig.transpose(0, 1))
        self.assertEqual(result.size(1), length_new)

David Pollack's avatar
David Pollack committed
51
52
53
54
        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 0.8)

55
        result = transforms.PadTrim(max_len=length_new, channels_first=False)(audio_orig)
David Pollack's avatar
David Pollack committed
56

57
        self.assertEqual(result.size(0), length_new)
David Pollack's avatar
David Pollack committed
58

59
        repr_test = transforms.PadTrim(max_len=length_new, channels_first=False)
60
        self.assertTrue(repr_test.__repr__())
61

David Pollack's avatar
David Pollack committed
62
    def test_downmix_mono(self):
David Pollack's avatar
David Pollack committed
63

David Pollack's avatar
David Pollack committed
64
65
66
67
68
69
70
71
72
        audio_L = self.sig.clone()
        audio_R = self.sig.clone()
        R_idx = int(audio_R.size(0) * 0.1)
        audio_R = torch.cat((audio_R[R_idx:], audio_R[:R_idx]))

        audio_Stereo = torch.cat((audio_L, audio_R), dim=1)

        self.assertTrue(audio_Stereo.size(1) == 2)

73
        result = transforms.DownmixMono(channels_first=False)(audio_Stereo)
David Pollack's avatar
David Pollack committed
74
75
76

        self.assertTrue(result.size(1) == 1)

77
        repr_test = transforms.DownmixMono(channels_first=False)
78
        self.assertTrue(repr_test.__repr__())
79

80
81
82
83
84
85
    def test_lc2cl(self):

        audio = self.sig.clone()
        result = transforms.LC2CL()(audio)
        self.assertTrue(result.size()[::-1] == audio.size())

86
        repr_test = transforms.LC2CL()
87
        self.assertTrue(repr_test.__repr__())
88

89
90
91
92
    def test_mel(self):

        audio = self.sig.clone()
        audio = transforms.Scale()(audio)
93
        self.assertTrue(audio.dim() == 2)
94
        result = transforms.MEL()(audio)
95
        self.assertTrue(result.dim() == 3)
96
        result = transforms.BLC2CBL()(result)
97
        self.assertTrue(result.dim() == 3)
98

99
        repr_test = transforms.MEL()
100
101
        self.assertTrue(repr_test.__repr__())

102
        repr_test = transforms.BLC2CBL()
103
        self.assertTrue(repr_test.__repr__())
104

David Pollack's avatar
David Pollack committed
105
106
107
108
109
    def test_compose(self):

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 1.2)
Soumith Chintala's avatar
Soumith Chintala committed
110
111
        maxminmax = np.abs(
            [audio_orig.min(), audio_orig.max()]).max().astype(np.float)
David Pollack's avatar
David Pollack committed
112
113

        tset = (transforms.Scale(factor=maxminmax),
114
                transforms.PadTrim(max_len=length_new, channels_first=False))
David Pollack's avatar
David Pollack committed
115
116
117
118
119
120
        result = transforms.Compose(tset)(audio_orig)

        self.assertTrue(np.abs([result.min(), result.max()]).max() == 1.)

        self.assertTrue(result.size(0) == length_new)

121
        repr_test = transforms.Compose(tset)
122
        self.assertTrue(repr_test.__repr__())
123

David Pollack's avatar
David Pollack committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def test_mu_law_companding(self):

        sig = self.sig.clone()

        quantization_channels = 256
        sig = self.sig.numpy()
        sig = sig / np.abs(sig).max()
        self.assertTrue(sig.min() >= -1. and sig.max() <= 1.)

        sig_mu = transforms.MuLawEncoding(quantization_channels)(sig)
        self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels)

        sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu)
        self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.)

        sig = self.sig.clone()
        sig = sig / torch.abs(sig).max()
        self.assertTrue(sig.min() >= -1. and sig.max() <= 1.)

        sig_mu = transforms.MuLawEncoding(quantization_channels)(sig)
        self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels)

        sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu)
        self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.)
David Pollack's avatar
David Pollack committed
148

149
        repr_test = transforms.MuLawEncoding(quantization_channels)
150
        self.assertTrue(repr_test.__repr__())
151
        repr_test = transforms.MuLawExpanding(quantization_channels)
152
        self.assertTrue(repr_test.__repr__())
153

154
155
156
157
    def test_mel2(self):
        audio_orig = self.sig.clone()  # (16000, 1)
        audio_scaled = transforms.Scale()(audio_orig)  # (16000, 1)
        audio_scaled = transforms.LC2CL()(audio_scaled)  # (1, 16000)
158
159
        mel_transform = transforms.MEL2()
        # check defaults
160
        spectrogram_torch = mel_transform(audio_scaled)  # (1, 319, 40)
161
        self.assertTrue(spectrogram_torch.dim() == 3)
162
163
164
        self.assertTrue(spectrogram_torch.le(0.).all())
        self.assertTrue(spectrogram_torch.ge(mel_transform.top_db).all())
        self.assertEqual(spectrogram_torch.size(-1), mel_transform.n_mels)
165
166
167
168
169
170
171
172
173
174
175
176
177
        # check correctness of filterbank conversion matrix
        self.assertTrue(mel_transform.fm.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform.fm.fb.sum(1).ge(0.).all())
        # check options
        mel_transform2 = transforms.MEL2(window=torch.hamming_window, pad=10, ws=500, hop=125, n_fft=800, n_mels=50)
        spectrogram2_torch = mel_transform2(audio_scaled)  # (1, 506, 50)
        self.assertTrue(spectrogram2_torch.dim() == 3)
        self.assertTrue(spectrogram2_torch.le(0.).all())
        self.assertTrue(spectrogram2_torch.ge(mel_transform.top_db).all())
        self.assertEqual(spectrogram2_torch.size(-1), mel_transform2.n_mels)
        self.assertTrue(mel_transform2.fm.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform2.fm.fb.sum(1).ge(0.).all())
        # check on multi-channel audio
178
179
180
181
182
183
184
        x_stereo, sr_stereo = torchaudio.load(self.test_filepath)
        spectrogram_stereo = mel_transform(x_stereo)
        self.assertTrue(spectrogram_stereo.dim() == 3)
        self.assertTrue(spectrogram_stereo.size(0) == 2)
        self.assertTrue(spectrogram_stereo.le(0.).all())
        self.assertTrue(spectrogram_stereo.ge(mel_transform.top_db).all())
        self.assertEqual(spectrogram_stereo.size(-1), mel_transform.n_mels)
185
186
187
188
189
        # check filterbank matrix creation
        fb_matrix_transform = transforms.F2M(n_mels=100, sr=16000, f_max=None, f_min=0., n_stft=400)
        self.assertTrue(fb_matrix_transform.fb.sum(1).le(1.).all())
        self.assertTrue(fb_matrix_transform.fb.sum(1).ge(0.).all())
        self.assertEqual(fb_matrix_transform.fb.size(), (400, 100))
Soumith Chintala's avatar
Soumith Chintala committed
190

David Pollack's avatar
David Pollack committed
191
192
if __name__ == '__main__':
    unittest.main()