test_transforms.py 6.96 KB
Newer Older
1
from __future__ import print_function
2
import os
David Pollack's avatar
David Pollack committed
3
4
5
6
7
8
import torch
import torchaudio
import torchaudio.transforms as transforms
import numpy as np
import unittest

Soumith Chintala's avatar
Soumith Chintala committed
9

David Pollack's avatar
David Pollack committed
10
11
class Tester(unittest.TestCase):

12
    # create a sinewave signal for testing
David Pollack's avatar
David Pollack committed
13
14
    sr = 16000
    freq = 440
15
    volume = .3
16
    sig = (torch.cos(2 * np.pi * torch.arange(0, 4 * sr).float() * freq / sr))
17
    sig.unsqueeze_(1)  # (64000, 1)
Soumith Chintala's avatar
Soumith Chintala committed
18
    sig = (sig * volume * 2**31).long()
19
20
21
22
    # file for stereo stft test
    test_dirpath = os.path.dirname(os.path.realpath(__file__))
    test_filepath = os.path.join(test_dirpath, "assets",
                                 "steam-train-whistle-daniel_simon.mp3")
David Pollack's avatar
David Pollack committed
23
24
25
26
27

    def test_scale(self):

        audio_orig = self.sig.clone()
        result = transforms.Scale()(audio_orig)
28
        self.assertTrue(result.min() >= -1. and result.max() <= 1.)
David Pollack's avatar
David Pollack committed
29

Soumith Chintala's avatar
Soumith Chintala committed
30
31
        maxminmax = np.abs(
            [audio_orig.min(), audio_orig.max()]).max().astype(np.float)
David Pollack's avatar
David Pollack committed
32
33
        result = transforms.Scale(factor=maxminmax)(audio_orig)
        self.assertTrue((result.min() == -1. or result.max() == 1.) and
34
                        result.min() >= -1. and result.max() <= 1.)
David Pollack's avatar
David Pollack committed
35

36
        repr_test = transforms.Scale()
37
        self.assertTrue(repr_test.__repr__())
38

David Pollack's avatar
David Pollack committed
39
40
41
42
43
44
    def test_pad_trim(self):

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 1.2)

45
46
        result = transforms.PadTrim(max_len=length_new, channels_first=False)(audio_orig)
        self.assertEqual(result.size(0), length_new)
David Pollack's avatar
David Pollack committed
47

48
49
50
        result = transforms.PadTrim(max_len=length_new, channels_first=True)(audio_orig.transpose(0, 1))
        self.assertEqual(result.size(1), length_new)

David Pollack's avatar
David Pollack committed
51
52
53
54
        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 0.8)

55
        result = transforms.PadTrim(max_len=length_new, channels_first=False)(audio_orig)
David Pollack's avatar
David Pollack committed
56

57
        self.assertEqual(result.size(0), length_new)
David Pollack's avatar
David Pollack committed
58

59
        repr_test = transforms.PadTrim(max_len=length_new, channels_first=False)
60
        self.assertTrue(repr_test.__repr__())
61

David Pollack's avatar
David Pollack committed
62
    def test_downmix_mono(self):
David Pollack's avatar
David Pollack committed
63

David Pollack's avatar
David Pollack committed
64
65
66
67
68
69
70
71
72
        audio_L = self.sig.clone()
        audio_R = self.sig.clone()
        R_idx = int(audio_R.size(0) * 0.1)
        audio_R = torch.cat((audio_R[R_idx:], audio_R[:R_idx]))

        audio_Stereo = torch.cat((audio_L, audio_R), dim=1)

        self.assertTrue(audio_Stereo.size(1) == 2)

73
        result = transforms.DownmixMono(channels_first=False)(audio_Stereo)
David Pollack's avatar
David Pollack committed
74
75
76

        self.assertTrue(result.size(1) == 1)

77
        repr_test = transforms.DownmixMono(channels_first=False)
78
        self.assertTrue(repr_test.__repr__())
79

80
81
82
83
84
85
    def test_lc2cl(self):

        audio = self.sig.clone()
        result = transforms.LC2CL()(audio)
        self.assertTrue(result.size()[::-1] == audio.size())

86
        repr_test = transforms.LC2CL()
87
        self.assertTrue(repr_test.__repr__())
88

David Pollack's avatar
David Pollack committed
89
90
91
92
93
    def test_compose(self):

        audio_orig = self.sig.clone()
        length_orig = audio_orig.size(0)
        length_new = int(length_orig * 1.2)
Soumith Chintala's avatar
Soumith Chintala committed
94
95
        maxminmax = np.abs(
            [audio_orig.min(), audio_orig.max()]).max().astype(np.float)
David Pollack's avatar
David Pollack committed
96
97

        tset = (transforms.Scale(factor=maxminmax),
98
                transforms.PadTrim(max_len=length_new, channels_first=False))
David Pollack's avatar
David Pollack committed
99
100
101
102
103
104
        result = transforms.Compose(tset)(audio_orig)

        self.assertTrue(np.abs([result.min(), result.max()]).max() == 1.)

        self.assertTrue(result.size(0) == length_new)

105
        repr_test = transforms.Compose(tset)
106
        self.assertTrue(repr_test.__repr__())
107

David Pollack's avatar
David Pollack committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    def test_mu_law_companding(self):

        sig = self.sig.clone()

        quantization_channels = 256
        sig = self.sig.numpy()
        sig = sig / np.abs(sig).max()
        self.assertTrue(sig.min() >= -1. and sig.max() <= 1.)

        sig_mu = transforms.MuLawEncoding(quantization_channels)(sig)
        self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels)

        sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu)
        self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.)

        sig = self.sig.clone()
        sig = sig / torch.abs(sig).max()
        self.assertTrue(sig.min() >= -1. and sig.max() <= 1.)

        sig_mu = transforms.MuLawEncoding(quantization_channels)(sig)
        self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels)

        sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu)
        self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.)
David Pollack's avatar
David Pollack committed
132

133
        repr_test = transforms.MuLawEncoding(quantization_channels)
134
        self.assertTrue(repr_test.__repr__())
135
        repr_test = transforms.MuLawExpanding(quantization_channels)
136
        self.assertTrue(repr_test.__repr__())
137

138
139
140
141
    def test_mel2(self):
        audio_orig = self.sig.clone()  # (16000, 1)
        audio_scaled = transforms.Scale()(audio_orig)  # (16000, 1)
        audio_scaled = transforms.LC2CL()(audio_scaled)  # (1, 16000)
142
        mel_transform = transforms.MelSpectrogram()
143
        # check defaults
144
        spectrogram_torch = mel_transform(audio_scaled)  # (1, 319, 40)
145
        self.assertTrue(spectrogram_torch.dim() == 3)
146
147
148
        self.assertTrue(spectrogram_torch.le(0.).all())
        self.assertTrue(spectrogram_torch.ge(mel_transform.top_db).all())
        self.assertEqual(spectrogram_torch.size(-1), mel_transform.n_mels)
149
150
151
152
        # check correctness of filterbank conversion matrix
        self.assertTrue(mel_transform.fm.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform.fm.fb.sum(1).ge(0.).all())
        # check options
153
154
        kwargs = {"window": torch.hamming_window, "pad": 10, "ws": 500, "hop": 125, "n_fft": 800, "n_mels": 50}
        mel_transform2 = transforms.MelSpectrogram(**kwargs)
155
156
157
158
159
160
161
162
        spectrogram2_torch = mel_transform2(audio_scaled)  # (1, 506, 50)
        self.assertTrue(spectrogram2_torch.dim() == 3)
        self.assertTrue(spectrogram2_torch.le(0.).all())
        self.assertTrue(spectrogram2_torch.ge(mel_transform.top_db).all())
        self.assertEqual(spectrogram2_torch.size(-1), mel_transform2.n_mels)
        self.assertTrue(mel_transform2.fm.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform2.fm.fb.sum(1).ge(0.).all())
        # check on multi-channel audio
163
164
165
166
167
168
169
        x_stereo, sr_stereo = torchaudio.load(self.test_filepath)
        spectrogram_stereo = mel_transform(x_stereo)
        self.assertTrue(spectrogram_stereo.dim() == 3)
        self.assertTrue(spectrogram_stereo.size(0) == 2)
        self.assertTrue(spectrogram_stereo.le(0.).all())
        self.assertTrue(spectrogram_stereo.ge(mel_transform.top_db).all())
        self.assertEqual(spectrogram_stereo.size(-1), mel_transform.n_mels)
170
        # check filterbank matrix creation
171
        fb_matrix_transform = transforms.MelScale(n_mels=100, sr=16000, f_max=None, f_min=0., n_stft=400)
172
173
174
        self.assertTrue(fb_matrix_transform.fb.sum(1).le(1.).all())
        self.assertTrue(fb_matrix_transform.fb.sum(1).ge(0.).all())
        self.assertEqual(fb_matrix_transform.fb.size(), (400, 100))
Soumith Chintala's avatar
Soumith Chintala committed
175

David Pollack's avatar
David Pollack committed
176
177
if __name__ == '__main__':
    unittest.main()