pipelines.rst 7.7 KB
Newer Older
1
2
.. py:module:: torchaudio.pipelines

3
4
5
6
torchaudio.pipelines
====================

.. currentmodule:: torchaudio.pipelines
moto's avatar
moto committed
7
		   
8
The ``torchaudio.pipelines`` module packages pre-trained models with support functions and meta-data into simple APIs tailored to perform specific tasks.
9

10
When using pre-trained models to perform a task, in addition to instantiating the model with pre-trained weights, the client code also needs to build pipelines for feature extractions and post processing in the same way they were done during the training. This requires to carrying over information used during the training, such as the type of transforms and the their parameters (for example, sampling rate the number of FFT bins).
11

12
To make this information tied to a pre-trained model and easily accessible, ``torchaudio.pipelines`` module uses the concept of a `Bundle` class, which defines a set of APIs to instantiate pipelines, and the interface of the pipelines.
13

14
The following figure illustrates this.
15

16
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-intro.png
17

18
A pre-trained model and associated pipelines are expressed as an instance of ``Bundle``. Different instances of same ``Bundle`` share the interface, but their implementations are not constrained to be of same types. For example, :class:`SourceSeparationBundle` defines the interface for performing source separation, but its instance :data:`CONVTASNET_BASE_LIBRI2MIX` instantiates a model of :class:`~torchaudio.models.ConvTasNet` while :data:`HDEMUCS_HIGH_MUSDB` instantiates a model of :class:`~torchaudio.models.HDemucs`. Still, because they share the same interface, the usage is the same.
19

20
.. note::
21

22
   Under the hood, the implementations of ``Bundle`` use components from other ``torchaudio`` modules, such as :mod:`torchaudio.models` and :mod:`torchaudio.transforms`, or even third party libraries like `SentencPiece <https://github.com/google/sentencepiece>`__ and `DeepPhonemizer <https://github.com/as-ideas/DeepPhonemizer>`__. But this implementation detail is abstracted away from library users.
23

24
25
.. _RNNT:

26
27
RNN-T Streaming/Non-Streaming ASR
---------------------------------
28

29
30
Interface
^^^^^^^^^
31

32
``RNNTBundle`` defines ASR pipelines and consists of three steps: feature extraction, inference, and de-tokenization.
33

34
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-rnntbundle.png
35

36
37
38
39
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst
40

41
42
43
   RNNTBundle
   RNNTBundle.FeatureExtractor
   RNNTBundle.TokenProcessor
44

45
.. rubric:: Tutorials using ``RNNTBundle``
46

47
.. minigallery:: torchaudio.pipelines.RNNTBundle
48

49
50
Pretrained Models
^^^^^^^^^^^^^^^^^
51

52
53
54
55
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst
56

57
   EMFORMER_RNNT_BASE_LIBRISPEECH
58
59


Grigory Sizov's avatar
Grigory Sizov committed
60
wav2vec 2.0 / HuBERT / WavLM - SSL
61
----------------------------------
62

63
64
Interface
^^^^^^^^^
65

66
``Wav2Vec2Bundle`` instantiates models that generate acoustic features that can be used for downstream inference and fine-tuning.
67

68
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-wav2vec2bundle.png
69

70
71
72
73
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst
74

75
   Wav2Vec2Bundle
76

77
78
Pretrained Models
^^^^^^^^^^^^^^^^^
79

80
81
82
83
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst
84

85
86
87
88
   WAV2VEC2_BASE
   WAV2VEC2_LARGE
   WAV2VEC2_LARGE_LV60K
   WAV2VEC2_XLSR53
89
90
91
   WAV2VEC2_XLSR_300M
   WAV2VEC2_XLSR_1B
   WAV2VEC2_XLSR_2B
92
93
94
   HUBERT_BASE
   HUBERT_LARGE
   HUBERT_XLARGE
Grigory Sizov's avatar
Grigory Sizov committed
95
96
97
   WAVLM_BASE
   WAVLM_BASE_PLUS
   WAVLM_LARGE
98

99
100
wav2vec 2.0 / HuBERT - Fine-tuned ASR
-------------------------------------
101

102
103
Interface
^^^^^^^^^
104

105
``Wav2Vec2ASRBundle`` instantiates models that generate probability distribution over pre-defined labels, that can be used for ASR.
106

107
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-wav2vec2asrbundle.png
108

109
110
111
112
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst
113

114
   Wav2Vec2ASRBundle
115

116
.. rubric:: Tutorials using ``Wav2Vec2ASRBundle``
117

118
.. minigallery:: torchaudio.pipelines.Wav2Vec2ASRBundle
119

120
121
Pretrained Models
^^^^^^^^^^^^^^^^^
122

123
124
125
126
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
   WAV2VEC2_ASR_BASE_10M
   WAV2VEC2_ASR_BASE_100H
   WAV2VEC2_ASR_BASE_960H
   WAV2VEC2_ASR_LARGE_10M
   WAV2VEC2_ASR_LARGE_100H
   WAV2VEC2_ASR_LARGE_960H
   WAV2VEC2_ASR_LARGE_LV60K_10M
   WAV2VEC2_ASR_LARGE_LV60K_100H
   WAV2VEC2_ASR_LARGE_LV60K_960H
   VOXPOPULI_ASR_BASE_10K_DE
   VOXPOPULI_ASR_BASE_10K_EN
   VOXPOPULI_ASR_BASE_10K_ES
   VOXPOPULI_ASR_BASE_10K_FR
   VOXPOPULI_ASR_BASE_10K_IT
   HUBERT_ASR_LARGE
   HUBERT_ASR_XLARGE
144

moto's avatar
moto committed
145

146
147
.. _Tacotron2:
   
moto's avatar
moto committed
148
149
150
Tacotron2 Text-To-Speech
------------------------

151
``Tacotron2TTSBundle`` defines text-to-speech pipelines and consists of three steps: tokenization, spectrogram generation and vocoder. The spectrogram generation is based on :class:`~torchaudio.models.Tacotron2` model.
moto's avatar
moto committed
152

153
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-tacotron2bundle.png
moto's avatar
moto committed
154

155
``TextProcessor`` can be rule-based tokenization in the case of characters, or it can be a neural-netowrk-based G2P model that generates sequence of phonemes from input text.
moto's avatar
moto committed
156

157
Similarly ``Vocoder`` can be an algorithm without learning parameters, like `Griffin-Lim`, or a neural-network-based model like `Waveglow`.
moto's avatar
moto committed
158

159
160
Interface
^^^^^^^^^
moto's avatar
moto committed
161

162
163
164
165
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst
moto's avatar
moto committed
166

167
168
169
   Tacotron2TTSBundle
   Tacotron2TTSBundle.TextProcessor
   Tacotron2TTSBundle.Vocoder
moto's avatar
moto committed
170

171
.. rubric:: Tutorials using ``Tacotron2TTSBundle``
moto's avatar
moto committed
172

173
.. minigallery:: torchaudio.pipelines.Tacotron2TTSBundle
moto's avatar
moto committed
174

175
176
Pretrained Models
^^^^^^^^^^^^^^^^^
moto's avatar
moto committed
177

178
179
180
181
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst
moto's avatar
moto committed
182

183
184
185
186
   TACOTRON2_WAVERNN_PHONE_LJSPEECH
   TACOTRON2_WAVERNN_CHAR_LJSPEECH
   TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH
   TACOTRON2_GRIFFINLIM_CHAR_LJSPEECH
187

188
189
190
Source Separation
-----------------

191
192
Interface
^^^^^^^^^
193

194
``SourceSeparationBundle`` instantiates source separation models which take single channel audio and generates multi-channel audio.
195

196
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-sourceseparationbundle.png
197

198
199
200
201
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst
202

203
   SourceSeparationBundle
204

205
.. rubric:: Tutorials using ``SourceSeparationBundle``
206

207
.. minigallery:: torchaudio.pipelines.SourceSeparationBundle
208

209
210
Pretrained Models
^^^^^^^^^^^^^^^^^
211

212
213
214
215
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst
216

217
218
219
   CONVTASNET_BASE_LIBRI2MIX
   HDEMUCS_HIGH_MUSDB_PLUS
   HDEMUCS_HIGH_MUSDB
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Squim Objective
---------------

Interface
~~~~~~~~~

:py:class:`SquimObjectiveBundle` defines speech quality and intelligibility measurement (SQUIM) pipeline that can predict **objecive** metric scores given the input waveform.

.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst

   SquimObjectiveBundle

Pretrained Models
~~~~~~~~~~~~~~~~~

.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst

   SQUIM_OBJECTIVE

Squim Subjective
----------------

Interface
~~~~~~~~~

:py:class:`SquimSubjectiveBundle` defines speech quality and intelligibility measurement (SQUIM) pipeline that can predict **subjective** metric scores given the input waveform.

.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst

   SquimSubjectiveBundle

Pretrained Models
~~~~~~~~~~~~~~~~~

.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst

   SQUIM_SUBJECTIVE