pipelines.rst 2.87 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
torchaudio.pipelines
====================

.. currentmodule:: torchaudio.pipelines

The pipelines subpackage contains API to access the models with pretrained weights, and information/helper functions associated the pretrained weights.

wav2vec 2.0 / HuBERT - Representation Learning
----------------------------------------------

.. autoclass:: Wav2Vec2Bundle
12
   :members: sample_rate
13
14
15
16

   .. automethod:: get_model

WAV2VEC2_BASE
17
~~~~~~~~~~~~~
18
19
20
21
22
23
24

.. container:: py attribute

   .. autodata:: WAV2VEC2_BASE
      :no-value:

WAV2VEC2_LARGE
25
~~~~~~~~~~~~~~
26
27
28
29
30
31
32

.. container:: py attribute

   .. autodata:: WAV2VEC2_LARGE
      :no-value:

WAV2VEC2_LARGE_LV60K
33
~~~~~~~~~~~~~~~~~~~~
34
35
36
37
38
39
40
41

.. container:: py attribute

   .. autodata:: WAV2VEC2_LARGE_LV60K
      :no-value:


WAV2VEC2_XLSR53
42
~~~~~~~~~~~~~~~
43
44
45
46
47
48
49

.. container:: py attribute

   .. autodata:: WAV2VEC2_XLSR53
      :no-value:

HUBERT_BASE
50
~~~~~~~~~~~
51
52
53
54
55
56
57

.. container:: py attribute

   .. autodata:: HUBERT_BASE
      :no-value:

HUBERT_LARGE
58
~~~~~~~~~~~~
59
60
61
62
63
64
65

.. container:: py attribute

   .. autodata:: HUBERT_LARGE
      :no-value:

HUBERT_XLARGE
66
~~~~~~~~~~~~~
67
68
69
70
71
72

.. container:: py attribute

   .. autodata:: HUBERT_XLARGE
      :no-value:

73
74
wav2vec 2.0 / HuBERT - Fine-tuned ASR
-------------------------------------
75
76

.. autoclass:: Wav2Vec2ASRBundle
77
   :members: sample_rate
78
79
80
81
82
83
84

   .. automethod:: get_model

   .. automethod:: get_labels


WAV2VEC2_ASR_BASE_10M
85
~~~~~~~~~~~~~~~~~~~~~
86
87
88
89
90
91
92

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_BASE_10M
      :no-value:

WAV2VEC2_ASR_BASE_100H
93
~~~~~~~~~~~~~~~~~~~~~~
94
95
96
97
98
99
100
      
.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_BASE_100H
      :no-value:

WAV2VEC2_ASR_BASE_960H
101
~~~~~~~~~~~~~~~~~~~~~~
102
103
104
105
106
107
108

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_BASE_960H
      :no-value:

WAV2VEC2_ASR_LARGE_10M
109
~~~~~~~~~~~~~~~~~~~~~~
110
111
112
113
114
115
116

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_10M
      :no-value:

WAV2VEC2_ASR_LARGE_100H
117
~~~~~~~~~~~~~~~~~~~~~~~
118
119
120
121
122
123
124

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_100H
      :no-value:

WAV2VEC2_ASR_LARGE_960H
125
~~~~~~~~~~~~~~~~~~~~~~~
126
127
128
129
130
131
132

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_960H
      :no-value:

WAV2VEC2_ASR_LARGE_LV60K_10M
133
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
134
135
136
137
138
139
140

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_LV60K_10M
      :no-value:

WAV2VEC2_ASR_LARGE_LV60K_100H
141
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
142
143
144
145
146
147
148

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_LV60K_100H
      :no-value:

WAV2VEC2_ASR_LARGE_LV60K_960H
149
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
150
151
152
153
154
155
156

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_LV60K_960H
      :no-value:

HUBERT_ASR_LARGE
157
~~~~~~~~~~~~~~~~
158
159
160
161
162
163
164

.. container:: py attribute

   .. autodata:: HUBERT_ASR_LARGE
      :no-value:

HUBERT_ASR_XLARGE
165
~~~~~~~~~~~~~~~~~
166
167
168
169
170
171
172
173
174
175

.. container:: py attribute

   .. autodata:: HUBERT_ASR_XLARGE
      :no-value:

References
----------

.. footbibliography::