"fmoe/vscode:/vscode.git/clone" did not exist on "0f091a1d84ab97a869e40870e9608380e7ca49c1"
pipelines.rst 6.54 KB
Newer Older
1
2
.. py:module:: torchaudio.pipelines

3
4
5
6
torchaudio.pipelines
====================

.. currentmodule:: torchaudio.pipelines
moto's avatar
moto committed
7
		   
8
The ``torchaudio.pipelines`` module packages pre-trained models with support functions and meta-data into simple APIs tailored to perform specific tasks.
9

10
When using pre-trained models to perform a task, in addition to instantiating the model with pre-trained weights, the client code also needs to build pipelines for feature extractions and post processing in the same way they were done during the training. This requires to carrying over information used during the training, such as the type of transforms and the their parameters (for example, sampling rate the number of FFT bins).
11

12
To make this information tied to a pre-trained model and easily accessible, ``torchaudio.pipelines`` module uses the concept of a `Bundle` class, which defines a set of APIs to instantiate pipelines, and the interface of the pipelines.
13

14
The following figure illustrates this.
15

16
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-intro.png
17

18
A pre-trained model and associated pipelines are expressed as an instance of ``Bundle``. Different instances of same ``Bundle`` share the interface, but their implementations are not constrained to be of same types. For example, :class:`SourceSeparationBundle` defines the interface for performing source separation, but its instance :data:`CONVTASNET_BASE_LIBRI2MIX` instantiates a model of :class:`~torchaudio.models.ConvTasNet` while :data:`HDEMUCS_HIGH_MUSDB` instantiates a model of :class:`~torchaudio.models.HDemucs`. Still, because they share the same interface, the usage is the same.
19

20
.. note::
21

22
   Under the hood, the implementations of ``Bundle`` use components from other ``torchaudio`` modules, such as :mod:`torchaudio.models` and :mod:`torchaudio.transforms`, or even third party libraries like `SentencPiece <https://github.com/google/sentencepiece>`__ and `DeepPhonemizer <https://github.com/as-ideas/DeepPhonemizer>`__. But this implementation detail is abstracted away from library users.
23

24
25
RNN-T Streaming/Non-Streaming ASR
---------------------------------
26

27
28
Interface
^^^^^^^^^
29

30
``RNNTBundle`` defines ASR pipelines and consists of three steps: feature extraction, inference, and de-tokenization.
31

32
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-rnntbundle.png
33

34
35
36
37
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst
38

39
40
41
   RNNTBundle
   RNNTBundle.FeatureExtractor
   RNNTBundle.TokenProcessor
42

43
.. rubric:: Tutorials using ``RNNTBundle``
44

45
.. minigallery:: torchaudio.pipelines.RNNTBundle
46

47
48
Pretrained Models
^^^^^^^^^^^^^^^^^
49

50
51
52
53
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst
54

55
   EMFORMER_RNNT_BASE_LIBRISPEECH
56
57


58
59
wav2vec 2.0 / HuBERT - SSL
--------------------------
60

61
62
Interface
^^^^^^^^^
63

64
``Wav2Vec2Bundle`` instantiates models that generate acoustic features that can be used for downstream inference and fine-tuning.
65

66
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-wav2vec2bundle.png
67

68
69
70
71
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst
72

73
   Wav2Vec2Bundle
74

75
76
Pretrained Models
^^^^^^^^^^^^^^^^^
77

78
79
80
81
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst
82

83
84
85
86
87
88
89
   WAV2VEC2_BASE
   WAV2VEC2_LARGE
   WAV2VEC2_LARGE_LV60K
   WAV2VEC2_XLSR53
   HUBERT_BASE
   HUBERT_LARGE
   HUBERT_XLARGE
90

91
92
wav2vec 2.0 / HuBERT - Fine-tuned ASR
-------------------------------------
93

94
95
Interface
^^^^^^^^^
96

97
``Wav2Vec2ASRBundle`` instantiates models that generate probability distribution over pre-defined labels, that can be used for ASR.
98

99
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-wav2vec2asrbundle.png
100

101
102
103
104
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst
105

106
   Wav2Vec2ASRBundle
107

108
.. rubric:: Tutorials using ``Wav2Vec2ASRBundle``
109

110
.. minigallery:: torchaudio.pipelines.Wav2Vec2ASRBundle
111

112
113
Pretrained Models
^^^^^^^^^^^^^^^^^
114

115
116
117
118
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
   WAV2VEC2_ASR_BASE_10M
   WAV2VEC2_ASR_BASE_100H
   WAV2VEC2_ASR_BASE_960H
   WAV2VEC2_ASR_LARGE_10M
   WAV2VEC2_ASR_LARGE_100H
   WAV2VEC2_ASR_LARGE_960H
   WAV2VEC2_ASR_LARGE_LV60K_10M
   WAV2VEC2_ASR_LARGE_LV60K_100H
   WAV2VEC2_ASR_LARGE_LV60K_960H
   VOXPOPULI_ASR_BASE_10K_DE
   VOXPOPULI_ASR_BASE_10K_EN
   VOXPOPULI_ASR_BASE_10K_ES
   VOXPOPULI_ASR_BASE_10K_FR
   VOXPOPULI_ASR_BASE_10K_IT
   HUBERT_ASR_LARGE
   HUBERT_ASR_XLARGE
136

moto's avatar
moto committed
137
138
139
140

Tacotron2 Text-To-Speech
------------------------

141
``Tacotron2TTSBundle`` defines text-to-speech pipelines and consists of three steps: tokenization, spectrogram generation and vocoder. The spectrogram generation is based on :class:`~torchaudio.models.Tacotron2` model.
moto's avatar
moto committed
142

143
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-tacotron2bundle.png
moto's avatar
moto committed
144

145
``TextProcessor`` can be rule-based tokenization in the case of characters, or it can be a neural-netowrk-based G2P model that generates sequence of phonemes from input text.
moto's avatar
moto committed
146

147
Similarly ``Vocoder`` can be an algorithm without learning parameters, like `Griffin-Lim`, or a neural-network-based model like `Waveglow`.
moto's avatar
moto committed
148

149
150
Interface
^^^^^^^^^
moto's avatar
moto committed
151

152
153
154
155
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst
moto's avatar
moto committed
156

157
158
159
   Tacotron2TTSBundle
   Tacotron2TTSBundle.TextProcessor
   Tacotron2TTSBundle.Vocoder
moto's avatar
moto committed
160

161
.. rubric:: Tutorials using ``Tacotron2TTSBundle``
moto's avatar
moto committed
162

163
.. minigallery:: torchaudio.pipelines.Tacotron2TTSBundle
moto's avatar
moto committed
164

165
166
Pretrained Models
^^^^^^^^^^^^^^^^^
moto's avatar
moto committed
167

168
169
170
171
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst
moto's avatar
moto committed
172

173
174
175
176
   TACOTRON2_WAVERNN_PHONE_LJSPEECH
   TACOTRON2_WAVERNN_CHAR_LJSPEECH
   TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH
   TACOTRON2_GRIFFINLIM_CHAR_LJSPEECH
177

178
179
180
Source Separation
-----------------

181
182
Interface
^^^^^^^^^
183

184
``SourceSeparationBundle`` instantiates source separation models which take single channel audio and generates multi-channel audio.
185

186
.. image:: https://download.pytorch.org/torchaudio/doc-assets/pipelines-sourceseparationbundle.png
187

188
189
190
191
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_class.rst
192

193
   SourceSeparationBundle
194

195
.. rubric:: Tutorials using ``SourceSeparationBundle``
196

197
.. minigallery:: torchaudio.pipelines.SourceSeparationBundle
198

199
200
Pretrained Models
^^^^^^^^^^^^^^^^^
201

202
203
204
205
.. autosummary::
   :toctree: generated
   :nosignatures:
   :template: autosummary/bundle_data.rst
206

207
208
209
   CONVTASNET_BASE_LIBRI2MIX
   HDEMUCS_HIGH_MUSDB_PLUS
   HDEMUCS_HIGH_MUSDB