"sgl-kernel/vscode:/vscode.git/clone" did not exist on "6f8f4aeea458ae7ba5a54619b1f108aab6076726"
test_transforms.py 19 KB
Newer Older
1
from __future__ import absolute_import, division, print_function, unicode_literals
2
import math
3
import os
4

David Pollack's avatar
David Pollack committed
5
6
7
import torch
import torchaudio
import torchaudio.transforms as transforms
Vincent QB's avatar
Vincent QB committed
8
9
import torchaudio.functional as F
from torchaudio.common_utils import IMPORT_LIBROSA, IMPORT_SCIPY
David Pollack's avatar
David Pollack committed
10
import unittest
11
import common_utils
David Pollack's avatar
David Pollack committed
12

13
14
15
16
17
18
if IMPORT_LIBROSA:
    import librosa

if IMPORT_SCIPY:
    import scipy

Vincent QB's avatar
Vincent QB committed
19
SKIP_LIBROSA_CONSISTENCY_TEST = True
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
RUN_CUDA = torch.cuda.is_available()
print("Run test with cuda:", RUN_CUDA)


def _test_script_module(f, tensor, *args, **kwargs):

    py_method = f(*args, **kwargs)
    jit_method = torch.jit.script(py_method)

    py_out = py_method(tensor)
    jit_out = jit_method(tensor)

    assert torch.allclose(jit_out, py_out)

    if RUN_CUDA:

        tensor = tensor.to("cuda")

        py_method = py_method.cuda()
        jit_method = torch.jit.script(py_method)

        py_out = py_method(tensor)
        jit_out = jit_method(tensor)

        assert torch.allclose(jit_out, py_out)

Soumith Chintala's avatar
Soumith Chintala committed
46

David Pollack's avatar
David Pollack committed
47
48
class Tester(unittest.TestCase):

49
    # create a sinewave signal for testing
50
    sample_rate = 16000
David Pollack's avatar
David Pollack committed
51
    freq = 440
52
    volume = .3
53
54
55
    waveform = (torch.cos(2 * math.pi * torch.arange(0, 4 * sample_rate).float() * freq / sample_rate))
    waveform.unsqueeze_(0)  # (1, 64000)
    waveform = (waveform * volume * 2**31).long()
56
    # file for stereo stft test
57
    test_dirpath, test_dir = common_utils.create_temp_assets_dir()
58
59
    test_filepath = os.path.join(test_dirpath, 'assets',
                                 'steam-train-whistle-daniel_simon.mp3')
David Pollack's avatar
David Pollack committed
60

61
62
63
64
65
    def scale(self, waveform, factor=float(2**31)):
        # scales a waveform by a factor
        if not waveform.is_floating_point():
            waveform = waveform.to(torch.get_default_dtype())
        return waveform / factor
66

67
68
69
70
    def test_scriptmodule_Spectrogram(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(transforms.Spectrogram, tensor)

71
72
73
74
    def test_scriptmodule_GriffinLim(self):
        tensor = torch.rand((1, 201, 6))
        _test_script_module(transforms.GriffinLim, tensor, length=1000, rand_init=False)

David Pollack's avatar
David Pollack committed
75
76
77
78
    def test_mu_law_companding(self):

        quantization_channels = 256

79
80
81
        waveform = self.waveform.clone()
        waveform /= torch.abs(waveform).max()
        self.assertTrue(waveform.min() >= -1. and waveform.max() <= 1.)
David Pollack's avatar
David Pollack committed
82

83
84
        waveform_mu = transforms.MuLawEncoding(quantization_channels)(waveform)
        self.assertTrue(waveform_mu.min() >= 0. and waveform_mu.max() <= quantization_channels)
David Pollack's avatar
David Pollack committed
85

86
        waveform_exp = transforms.MuLawDecoding(quantization_channels)(waveform_mu)
87
        self.assertTrue(waveform_exp.min() >= -1. and waveform_exp.max() <= 1.)
88

89
90
91
92
93
94
95
96
    def test_scriptmodule_AmplitudeToDB(self):
        spec = torch.rand((6, 201))
        _test_script_module(transforms.AmplitudeToDB, spec)

    def test_scriptmodule_MelScale(self):
        spec_f = torch.rand((1, 6, 201))
        _test_script_module(transforms.MelScale, spec_f)

97
98
99
100
101
102
103
104
105
106
107
108
109
110
    def test_melscale_load_save(self):
        specgram = torch.ones(1, 1000, 100)
        melscale_transform = transforms.MelScale()
        melscale_transform(specgram)

        melscale_transform_copy = transforms.MelScale(n_stft=1000)
        melscale_transform_copy.load_state_dict(melscale_transform.state_dict())

        fb = melscale_transform.fb
        fb_copy = melscale_transform_copy.fb

        self.assertEqual(fb_copy.size(), (1000, 128))
        self.assertTrue(torch.allclose(fb, fb_copy))

111
112
113
114
    def test_scriptmodule_MelSpectrogram(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(transforms.MelSpectrogram, tensor)

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    def test_melspectrogram_load_save(self):
        waveform = self.waveform.float()
        mel_spectrogram_transform = transforms.MelSpectrogram()
        mel_spectrogram_transform(waveform)

        mel_spectrogram_transform_copy = transforms.MelSpectrogram()
        mel_spectrogram_transform_copy.load_state_dict(mel_spectrogram_transform.state_dict())

        window = mel_spectrogram_transform.spectrogram.window
        window_copy = mel_spectrogram_transform_copy.spectrogram.window

        fb = mel_spectrogram_transform.mel_scale.fb
        fb_copy = mel_spectrogram_transform_copy.mel_scale.fb

        self.assertTrue(torch.allclose(window, window_copy))
        # the default for n_fft = 400 and n_mels = 128
        self.assertEqual(fb_copy.size(), (201, 128))
        self.assertTrue(torch.allclose(fb, fb_copy))

134
    def test_mel2(self):
PCerles's avatar
PCerles committed
135
        top_db = 80.
136
        s2db = transforms.AmplitudeToDB('power', top_db)
PCerles's avatar
PCerles committed
137

138
139
        waveform = self.waveform.clone()  # (1, 16000)
        waveform_scaled = self.scale(waveform)  # (1, 16000)
140
        mel_transform = transforms.MelSpectrogram()
141
        # check defaults
142
        spectrogram_torch = s2db(mel_transform(waveform_scaled))  # (1, 128, 321)
143
        self.assertTrue(spectrogram_torch.dim() == 3)
PCerles's avatar
PCerles committed
144
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
145
        self.assertEqual(spectrogram_torch.size(1), mel_transform.n_mels)
146
        # check correctness of filterbank conversion matrix
147
148
        self.assertTrue(mel_transform.mel_scale.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform.mel_scale.fb.sum(1).ge(0.).all())
149
        # check options
150
151
        kwargs = {'window_fn': torch.hamming_window, 'pad': 10, 'win_length': 500,
                  'hop_length': 125, 'n_fft': 800, 'n_mels': 50}
152
        mel_transform2 = transforms.MelSpectrogram(**kwargs)
153
        spectrogram2_torch = s2db(mel_transform2(waveform_scaled))  # (1, 50, 513)
154
        self.assertTrue(spectrogram2_torch.dim() == 3)
PCerles's avatar
PCerles committed
155
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
156
157
158
        self.assertEqual(spectrogram2_torch.size(1), mel_transform2.n_mels)
        self.assertTrue(mel_transform2.mel_scale.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform2.mel_scale.fb.sum(1).ge(0.).all())
159
        # check on multi-channel audio
160
161
        x_stereo, sr_stereo = torchaudio.load(self.test_filepath)  # (2, 278756), 44100
        spectrogram_stereo = s2db(mel_transform(x_stereo))  # (2, 128, 1394)
162
163
        self.assertTrue(spectrogram_stereo.dim() == 3)
        self.assertTrue(spectrogram_stereo.size(0) == 2)
PCerles's avatar
PCerles committed
164
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
165
        self.assertEqual(spectrogram_stereo.size(1), mel_transform.n_mels)
166
        # check filterbank matrix creation
167
168
        fb_matrix_transform = transforms.MelScale(
            n_mels=100, sample_rate=16000, f_min=0., f_max=None, n_stft=400)
169
170
171
        self.assertTrue(fb_matrix_transform.fb.sum(1).le(1.).all())
        self.assertTrue(fb_matrix_transform.fb.sum(1).ge(0.).all())
        self.assertEqual(fb_matrix_transform.fb.size(), (400, 100))
Soumith Chintala's avatar
Soumith Chintala committed
172

173
174
175
176
    def test_scriptmodule_MFCC(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(transforms.MFCC, tensor)

PCerles's avatar
PCerles committed
177
    def test_mfcc(self):
178
179
        audio_orig = self.waveform.clone()
        audio_scaled = self.scale(audio_orig)  # (1, 16000)
PCerles's avatar
PCerles committed
180
181
182
183

        sample_rate = 16000
        n_mfcc = 40
        n_mels = 128
184
        mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate,
PCerles's avatar
PCerles committed
185
186
187
                                                    n_mfcc=n_mfcc,
                                                    norm='ortho')
        # check defaults
188
        torch_mfcc = mfcc_transform(audio_scaled)  # (1, 40, 321)
PCerles's avatar
PCerles committed
189
        self.assertTrue(torch_mfcc.dim() == 3)
190
191
        self.assertTrue(torch_mfcc.shape[1] == n_mfcc)
        self.assertTrue(torch_mfcc.shape[2] == 321)
PCerles's avatar
PCerles committed
192
        # check melkwargs are passed through
193
194
        melkwargs = {'win_length': 200}
        mfcc_transform2 = torchaudio.transforms.MFCC(sample_rate=sample_rate,
PCerles's avatar
PCerles committed
195
196
197
                                                     n_mfcc=n_mfcc,
                                                     norm='ortho',
                                                     melkwargs=melkwargs)
198
199
        torch_mfcc2 = mfcc_transform2(audio_scaled)  # (1, 40, 641)
        self.assertTrue(torch_mfcc2.shape[2] == 641)
PCerles's avatar
PCerles committed
200
201

        # check norms work correctly
202
        mfcc_transform_norm_none = torchaudio.transforms.MFCC(sample_rate=sample_rate,
PCerles's avatar
PCerles committed
203
204
                                                              n_mfcc=n_mfcc,
                                                              norm=None)
205
        torch_mfcc_norm_none = mfcc_transform_norm_none(audio_scaled)  # (1, 40, 321)
PCerles's avatar
PCerles committed
206
207

        norm_check = torch_mfcc.clone()
208
209
        norm_check[:, 0, :] *= math.sqrt(n_mels) * 2
        norm_check[:, 1:, :] *= math.sqrt(n_mels / 2) * 2
PCerles's avatar
PCerles committed
210
211
212

        self.assertTrue(torch_mfcc_norm_none.allclose(norm_check))

Vincent QB's avatar
Vincent QB committed
213
214
215
216
    @unittest.skipIf(
        SKIP_LIBROSA_CONSISTENCY_TEST or not IMPORT_LIBROSA or not IMPORT_SCIPY,
        'Librosa and scipy are not available, or consisency test disabled'
    )
PCerles's avatar
PCerles committed
217
    def test_librosa_consistency(self):
218
219
220
        def _test_librosa_consistency_helper(n_fft, hop_length, power, n_mels, n_mfcc, sample_rate):
            input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
            sound, sample_rate = torchaudio.load(input_path)
221
            sound_librosa = sound.cpu().numpy().squeeze()  # (64000)
222
223

            # test core spectrogram
224
            spect_transform = torchaudio.transforms.Spectrogram(n_fft=n_fft, hop_length=hop_length, power=2)
225
226
227
228
229
            out_librosa, _ = librosa.core.spectrum._spectrogram(y=sound_librosa,
                                                                n_fft=n_fft,
                                                                hop_length=hop_length,
                                                                power=2)

230
            out_torch = spect_transform(sound).squeeze().cpu()
231
232
233
            self.assertTrue(torch.allclose(out_torch, torch.from_numpy(out_librosa), atol=1e-5))

            # test mel spectrogram
234
235
236
            melspect_transform = torchaudio.transforms.MelSpectrogram(
                sample_rate=sample_rate, window_fn=torch.hann_window,
                hop_length=hop_length, n_mels=n_mels, n_fft=n_fft)
237
238
239
            librosa_mel = librosa.feature.melspectrogram(y=sound_librosa, sr=sample_rate,
                                                         n_fft=n_fft, hop_length=hop_length, n_mels=n_mels,
                                                         htk=True, norm=None)
jamarshon's avatar
jamarshon committed
240
            librosa_mel_tensor = torch.from_numpy(librosa_mel)
241
            torch_mel = melspect_transform(sound).squeeze().cpu()
242

jamarshon's avatar
jamarshon committed
243
            self.assertTrue(torch.allclose(torch_mel.type(librosa_mel_tensor.dtype), librosa_mel_tensor, atol=5e-3))
244
245

            # test s2db
246
            db_transform = torchaudio.transforms.AmplitudeToDB('power', 80.)
247
            db_torch = db_transform(spect_transform(sound)).squeeze().cpu()
248
249
250
            db_librosa = librosa.core.spectrum.power_to_db(out_librosa)
            self.assertTrue(torch.allclose(db_torch, torch.from_numpy(db_librosa), atol=5e-3))

251
            db_torch = db_transform(melspect_transform(sound)).squeeze().cpu()
252
            db_librosa = librosa.core.spectrum.power_to_db(librosa_mel)
jamarshon's avatar
jamarshon committed
253
            db_librosa_tensor = torch.from_numpy(db_librosa)
254

jamarshon's avatar
jamarshon committed
255
            self.assertTrue(torch.allclose(db_torch.type(db_librosa_tensor.dtype), db_librosa_tensor, atol=5e-3))
256
257

            # test MFCC
258
259
            melkwargs = {'hop_length': hop_length, 'n_fft': n_fft}
            mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate,
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
                                                        n_mfcc=n_mfcc,
                                                        norm='ortho',
                                                        melkwargs=melkwargs)

            # librosa.feature.mfcc doesn't pass kwargs properly since some of the
            # kwargs for melspectrogram and mfcc are the same. We just follow the
            # function body in https://librosa.github.io/librosa/_modules/librosa/feature/spectral.html#melspectrogram
            # to mirror this function call with correct args:

    #         librosa_mfcc = librosa.feature.mfcc(y=sound_librosa,
    #                                             sr=sample_rate,
    #                                             n_mfcc = n_mfcc,
    #                                             hop_length=hop_length,
    #                                             n_fft=n_fft,
    #                                             htk=True,
    #                                             norm=None,
    #                                             n_mels=n_mels)

            librosa_mfcc = scipy.fftpack.dct(db_librosa, axis=0, type=2, norm='ortho')[:n_mfcc]
jamarshon's avatar
jamarshon committed
279
            librosa_mfcc_tensor = torch.from_numpy(librosa_mfcc)
280
            torch_mfcc = mfcc_transform(sound).squeeze().cpu()
281

jamarshon's avatar
jamarshon committed
282
            self.assertTrue(torch.allclose(torch_mfcc.type(librosa_mfcc_tensor.dtype), librosa_mfcc_tensor, atol=5e-3))
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

        kwargs1 = {
            'n_fft': 400,
            'hop_length': 200,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 40,
            'sample_rate': 16000
        }

        kwargs2 = {
            'n_fft': 600,
            'hop_length': 100,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 20,
            'sample_rate': 16000
        }

        kwargs3 = {
            'n_fft': 200,
            'hop_length': 50,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 50,
            'sample_rate': 24000
        }

        _test_librosa_consistency_helper(**kwargs1)
        _test_librosa_consistency_helper(**kwargs2)
        _test_librosa_consistency_helper(**kwargs3)
PCerles's avatar
PCerles committed
314

Oktai Tatanov's avatar
Oktai Tatanov committed
315
316
317
318
319
320
321
    def test_scriptmodule_Resample(self):
        tensor = torch.rand((2, 1000))
        sample_rate = 100
        sample_rate_2 = 50

        _test_script_module(transforms.Spectrogram, tensor, sample_rate, sample_rate_2)

jamarshon's avatar
jamarshon committed
322
323
    def test_resample_size(self):
        input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
324
        waveform, sample_rate = torchaudio.load(input_path)
jamarshon's avatar
jamarshon committed
325
326
327
328
329

        upsample_rate = sample_rate * 2
        downsample_rate = sample_rate // 2
        invalid_resample = torchaudio.transforms.Resample(sample_rate, upsample_rate, resampling_method='foo')

330
        self.assertRaises(ValueError, invalid_resample, waveform)
jamarshon's avatar
jamarshon committed
331
332
333

        upsample_resample = torchaudio.transforms.Resample(
            sample_rate, upsample_rate, resampling_method='sinc_interpolation')
334
        up_sampled = upsample_resample(waveform)
jamarshon's avatar
jamarshon committed
335
336

        # we expect the upsampled signal to have twice as many samples
337
        self.assertTrue(up_sampled.size(-1) == waveform.size(-1) * 2)
jamarshon's avatar
jamarshon committed
338
339
340

        downsample_resample = torchaudio.transforms.Resample(
            sample_rate, downsample_rate, resampling_method='sinc_interpolation')
341
        down_sampled = downsample_resample(waveform)
jamarshon's avatar
jamarshon committed
342
343

        # we expect the downsampled signal to have half as many samples
344
        self.assertTrue(down_sampled.size(-1) == waveform.size(-1) // 2)
PCerles's avatar
PCerles committed
345

Vincent QB's avatar
Vincent QB committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    def test_compute_deltas(self):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)
        transform = transforms.ComputeDeltas(win_length=win_length)
        computed = transform(specgram)
        self.assertTrue(computed.shape == specgram.shape, (computed.shape, specgram.shape))

    def test_compute_deltas_transform_same_as_functional(self, atol=1e-6, rtol=1e-8):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)

        transform = transforms.ComputeDeltas(win_length=win_length)
        computed_transform = transform(specgram)

        computed_functional = F.compute_deltas(specgram, win_length=win_length)
        torch.testing.assert_allclose(computed_functional, computed_transform, atol=atol, rtol=rtol)

    def test_compute_deltas_twochannel(self):
        specgram = torch.tensor([1., 2., 3., 4.]).repeat(1, 2, 1)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
                                  [0.5, 1.0, 1.0, 0.5]]])
        transform = transforms.ComputeDeltas()
        computed = transform(specgram)
        self.assertTrue(computed.shape == specgram.shape, (computed.shape, specgram.shape))

Vincent QB's avatar
Vincent QB committed
377
378
379
380
381
382
383
384
385
386
387
388
389
    def test_batch_compute_deltas(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = transforms.ComputeDeltas()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.ComputeDeltas()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

390
391
392
393
394
395
396
397
    def test_scriptmodule_MuLawEncoding(self):
        tensor = torch.rand((1, 10))
        _test_script_module(transforms.MuLawEncoding, tensor)

    def test_scriptmodule_MuLawDecoding(self):
        tensor = torch.rand((1, 10))
        _test_script_module(transforms.MuLawDecoding, tensor)

Vincent QB's avatar
Vincent QB committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    def test_batch_mulaw(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        waveform_encoded = transforms.MuLawEncoding()(waveform)
        expected = waveform_encoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        waveform_batched = waveform.unsqueeze(0).repeat(3, 1, 1)
        computed = transforms.MuLawEncoding()(waveform_batched)

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

        # Single then transform then batch
        waveform_decoded = transforms.MuLawDecoding()(waveform_encoded)
        expected = waveform_decoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        computed = transforms.MuLawDecoding()(computed)

        # shape = (3, 2, 201, 1394)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

424
425
426
427
428
429
430
431
432
433
434
435
    def test_batch_spectrogram(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        # Single then transform then batch
        expected = transforms.Spectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = transforms.Spectrogram()(waveform.repeat(3, 1, 1))

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))

436
437
438
439
440
    def test_scriptmodule_TimeStretch(self):
        n_freq = 400
        hop_length = 512
        fixed_rate = 1.3
        tensor = torch.rand((10, 2, n_freq, 10, 2))
441
        _test_script_module(transforms.TimeStretch, tensor, n_freq=n_freq, hop_length=hop_length, fixed_rate=fixed_rate)
442
443
444

    def test_scriptmodule_FrequencyMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
445
        _test_script_module(transforms.FrequencyMasking, tensor, freq_mask_param=60, iid_masks=False)
446
447
448

    def test_scriptmodule_TimeMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
449
        _test_script_module(transforms.TimeMasking, tensor, time_mask_param=30, iid_masks=False)
450

Vincent QB's avatar
Vincent QB committed
451

David Pollack's avatar
David Pollack committed
452
453
if __name__ == '__main__':
    unittest.main()